Моделирование рассуждений. Опыт анализа мыслительных актов

Поспелов Дмитрий Александрович

Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.

Для широкого круга читателей.

 

ПРЕДИСЛОВИЕ

В бурно развивающейся науке «искусственный интеллект» скрещиваются и переплетаются проблемы, которые давно волнуют специалистов самых разных научных направлений. Психологи и программисты, философы и инженеры, лингвисты и математики, биологи и кибернетики – все они в той или иной мере соприкасаются с проблемами искусственного интеллекта и участвуют в их решении. Данная книга посвящена одной из этих проблем – моделированию человеческих рассуждений. Интерес к моделированию рассуждений не случаен. Интеллектуальные системы создаются для того, чтобы овеществлять в технических устройствах знания и умения, которыми обладают люди, чтобы решать задачи, относимые к области творческой деятельности человека, не хуже людей. В интеллектуальные системы, особенно в те, которые получили название экспертных систем и предназначены для помощи специалистам в решении их задач, необходимо вложить знание о том, как мы рассуждаем, когда ищем решение. И если не говорить о математике и еще нескольких науках, опирающихся на точные и формальные модели, то наши схемы рассуждений – это тот самый аппарат, с помощью которого осуществляется значительная доля творческой деятельности.

Когда специалисты в области моделирования человеческих рассуждений начали свою работу, они столкнулись с тем, что человеческие рассуждения представляют собой нечто загадочное и детально никем не изучались. Казалось бы, в логике – науке о рассуждениях – за многие века ее существования должны были накопиться горы фактов о том, как люди делают выводы на основании знаний. Но, как выяснилось, логиков традиционно интересует лишь чрезвычайно узкий класс рассуждений, которые можно было бы назвать строгими, а остальные многочисленные формы человеческих рассуждений они не включают в свою компетенцию. Психология мышления также весьма сдержанно относится к тому, как формируются у человека схемы рассуждений и как он ими пользуется в конкретных ситуациях. Лингвисты, которые много занимались логическими проблемами естественного языка, остались далеки от понимания того, как носитель этого языка строит на нем свои схемы принятия решений. До появления работ в области искусственного интеллекта человеческие рассуждения оставались терра инкогнито. Даже само понятие «рассуждение» не получило точного истолкования.

Эта книга похожа на мозаичное полотно, в котором сделаны еще не все детали. Уже виден общий контур, удается схватить нечто, объединяющее между собой отдельные фрагменты, но до окончания работы достаточно далеко. И одна из главных задач книги – попробовать поставить вопросы, сформулировать проблемы, уточнить задачи, которые нужно решить для заполнения лакун в этой мозаике. Поэтому книга состоит как бы из отдельных сцен, выхваченных из некоторого целого. Эти сцены связаны между собой тем, что в каждой из них мы сталкиваемся с пока еще до конца неясным феноменом, который носит название «человеческие рассуждения».

Многие термины, которые будут встречаться в книге, например «посылки», «заключения», «вывод», «логика», «рассуждение» и т.п., не получат строгого определения. Почему – станет ясно из чтения книги. Ее пафос – такое понимание рассуждений, которое намного шире чисто логического истолкования этого термина, приводимого в известном учебнике В.Ф. Асмуса: «Рассуждением называется ряд суждений, которые все относятся к определенному предмету или вопросу и которые идут одно за другим таким образом, что из предшествующих суждений следуют другие, а в результате получается ответ на поставленный вопрос» (Асмус В.Ф. Логика. – М.: Госполитиздат, 1947, с. 147).

В тексте книги нет ссылок на литературу. Все сведения об использованной и цитируемой литературе даны в комментарии, завершающем книгу. Там же приводится ряд замечаний к отдельным разделам книги, а также указана дополнительная литература, относящаяся к кругу затронутых вопросов.

Проблемы моделирования рассуждений представляют интерес для специалистов по интеллектуальным системам и искусственному интеллекту. Об этой области исследований, термины которой встречаются на страницах книги, можно прочитать в ранее изданной книге автора «Фантазия или наука? На пути к искусственному интеллекту» (М.: Наука, 1982. – 280 с.).

 

Глава первая. У ИСТОКОВ ФОРМАЛЬНЫХ РАССУЖДЕНИЙ

 

Правое и левое

Метафора правостороннего и левостороннего мышления возникла в начале семидесятых годов. В 1972 году американский врач Орнстайн провел эксперименты с людьми, у которых были перерезаны межполушарные спайки. Это привело к тому, что оба полушария стали действовать практически независимо. Такая операция была вынужденной, она избавляла больных от тяжелого недуга.

До этого предполагалось, что полушария человеческого мозга действуют, как бы резервируя друг друга. Имела хождение гипотеза о том, что надежность работы мозга определяется двойным резервированием выполнения его основных функций. Но поведение людей с рассеченной связью между полушариями заставило отказаться от этой соблазнительной гипотезы. Оказалось, что механизмы мышления, сконцентрированные в различных полушариях, кардинально отличаются друг от друга. У подавляющего большинства людей, которые являются правшами, левое полушарие, управляющее правой стороной тела, характеризуется тем, что в нем локализован центр речи. У врожденных левшей этот центр локализован в правом полушарии. Но мы в дальнейшем будем говорить для определенности о правшах.

Тонкие эксперименты и наблюдения позволили специалистам накопить немало сведений об особенностях механизмов работы левого и правого полушарий. И хотя многое здесь еще не выяснено до конца, многое неизвестно, но уже сейчас ясна основная разница между ними. Левое полушарие в своей работе опирается на то, что принято называть самосознанием. Весь окружающий мир как бы делится на два четко разграниченных пространства: «Я» и «не-Я». Между этими пространствами становится возможным активное взаимодействие. Поэтому левополушарное мышление можно было бы назвать активным. Процедуры, реализованные в нем, позволяют активно воздействовать на элементы пространства «не-Я» и, в частности, осуществлять предметную деятельность в этом пространстве. Для того чтобы это стало возможным, необходимо уметь расчленять содержимое пространства «не-Я» на отдельные составляющие. Функции анализа, декомпозиции целого на части – прерогатива левого полушария. Это расчленение происходит благодаря возможности оперирования с признаками конкретных объектов в пространстве «не-Я».

Пространство «Я» также подвергается декомпозиции. Мы воспринимаем себя не только как единое целое, но и как взаимосвязанную совокупность отдельных частей. Левое полушарие обеспечивает как бы вынесение точки наблюдения за пределы пространства «Я». Эта точка наблюдения и характеризует самосознание, отделенное от пространств «Я» и «не-Я». Возможно, что субъективное ощущение «выхода из тела» при принятии ряда препаратов (например, ЛСД), когда сознание кажется сконцентрированным в некоторой точке вне тела, на которое можно «смотреть извне», как раз и характеризует эту особую функцию левополушарного мышления.

Теперь самое время подчеркнуть, что на страницах книги термин «левостороннее» и «правостороннее» (левополушарное и правополушарное) мышление являются условными. Не надо думать, что у человека существуют как бы две различные системы мышления. Мышление человека, конечно, процесс единый, в котором одновременно участвуют оба полушария головного мозга. Но те специфические механизмы мышления, которые в основном локализуются в одном из двух полушарий, удобно объединять в группы, называемые левосторонним и правосторонним механизмами мышления.

Однако левое полушарие способно не только к анализу, разложению всего воспринимаемого в пространствах «Я» и «не-Я» на составляющие. Оно способно к установлению сходства и различия между выделенными частями целого по наличию или отсутствию общих признаков. Механизмы обнаружения сходства и различия между конкретными объектами становятся основой для простейших логических операций: отождествления и различения.

То, что мы описали, характеризует мышление, которое можно было бы назвать конкретно-ситуационным. Но левое полушарие способно на большее, чем такое мышление. Оно способно как бы «оторвать» признаки от конкретного объекта и приписать их абстрактному объекту, обладающему этими признаками. Такие признаки можно назвать категориальными. С их появлением связан и следующий шаг в развитии мышления – образование понятий. Понятия есть совокупности категориальных признаков, определенным образом связанных между собой.

Мы уже говорили, что речевой центр находится в левом полушарии. Появление речи невозможно без механизма образования понятий. Каждому понятию, синтезированному в левом полушарии, соответствует звуковой код, называющий это понятие. Оторванность понятий от конкретной предметной ситуации дает возможность перехода к абстрактным символам, соотносимым со словами языка. А это, в свою очередь, делает естественный язык мощным инструментом символьных преобразований. Так появляется понятийное мышление. Оно строится на конкретно-ситуационном мышлении, оперирующем с механизмами сходства-различия, эмпирическом мышлении, когда выделенные признаки оцениваются с точки зрения прагматической, функциональной (этим предметом из-за его формы можно рубить дерево), и категориальном мышлении, опирающемся на манипулирование с категориальными признаками.

Эти четыре типа мышления соотнесены с речью. Процедуры, связанные с ними, могут вербализироваться, т.е. описываться в виде текстов на естественном языке. Так возникают, в частности, тексты человеческих рассуждений, основанных на рациональных предпосылках и на осознанных шагах вывода.

Правополушарное мышление обладает иными особенностями. В отличие от левого полушария, которое способно любую конкретную ситуацию во внешнем мире (в пространстве «не-Я») отделить от «Я» субъекта, развести временной и пространственный контекст, в котором существует данная конкретная ситуация, правое полушарие оперирует неразделенными образами конкретных ситуаций (гештальтами), в которых объекты вместе с их отношениями и признаками неразрывно связаны с временем и пространством, а также со всем отражением этого в эмоционально-волевой сфере «Я». В правом полушарии возникают чувственные образы реального мира. С его помощью происходит созерцание этих образов, или застывших в полной неподвижности, или текучих, постоянно меняющихся во времени и пространстве.

Как и для левого полушария, для правого полушария можно выделить несколько уровней или типов мышления. Это образно-ситуационное мышление, воспринимающее образы ситуаций, маркированных временными и пространственными отметками и соотнесенных неразрывно с тем эмоциональным фоном, на котором они наблюдались. На этом уровне правостороннего мышления также реализуются операции типа сходство-различие. Но эти операции касаются не признаков, которыми оперирует левое полушарие, а тех комплексов ощущений-состояний, в которых фиксируются отдельные ситуации. В памяти правого полушария хранится своеобразный кинофильм, кадры которого представляют собой следующие друг за другом чувственные образы ситуаций, каждая из которых существует как кадр киноленты обособленно от других, но образует связный фильм при последовательном их прокручивании.

Следующим уровнем правополушарного мышления является наглядно-образное мышление. В отличие от левополушарного механизма «взгляда со стороны», когда самосознание как бы извне анализирует отгороженные друг от друга ситуации в пространствах «Я» и «не-Я», правосторонний механизм «взгляда со стороны» смешивает эти две ситуации, рассматривает их как единое и неразрывное целое. Расплывчатые и трудно уловимые представления и переживания, связанные с некоторой ситуацией-гештальтом, операциями типа «сходство-различие» объединяются в классы ситуаций, которые левое полушарие никогда бы не сблизило между собой. Аналогия и ассоциация – основные механизмы этих объединений. Они порождают чувственные образы предметов и ситуаций, выступающих в виде единиц, которыми оперирует наглядно-образное мышление.

Высшим уровнем правополушарного мышления служит символическо-образное мышление. На этом уровне возникают символические системы, в которые группируются те или иные образы. Эти системы связаны друг с другом цепями аналогий и ассоциаций различной силы. Любой образ, переходя из системы в систему, трансформируется, изменяется, сохраняя лишь то, что составляет его суть.

Правополушарные образы и действия с ними не находят прямой вербализации. Их словесное описание практически невозможно, как невозможно словами описать впечатление от увиденного потрясшего нас пейзажа. И если для левополушарного мышления характерна единственность того объекта, с которым оно в данный момент оперирует, то для правополушарного мышления характерна множественность, неопределенность этого объекта. Многие яркие сновидения, в которых красочные картины сменяют друг друга в самых немыслимых ассоциациях, являются порождением правого полушария.

Подведем некоторые итоги. Самое важное для того, о чем говорится в этой книге, это наличие многих типов мышления, и прежде всего левостороннего и правостороннего мышления. Логика человеческих рассуждений, возникшая еще в Древней Греции и благополучно дожившая до наших дней, занималась и занимается лишь теми механизмами, которые характерны для левостороннего мышления. А это значит, что вне этой науки остались все способы принятия решений, опирающиеся на нерасчлененные образы правого полушария, преобразуемые сложными операциями ассоциативного типа. Вклад правосторонних механизмов в творческую деятельность огромен. Интуиция, озарение, догадка, поэтический образ – порождения правого полушария. Без этого остается лишь левое полушарие, функции которого чрезвычайно близки к функциям программиста, формирующего алгоритм решения нужной задачи для компьютера или исполнительного механизма типа станка с программным управлением.

Конечно, это очень грубая метафора. Но она отражает суть дела. Если продолжить ее, то можно сказать, что в голове у человека как бы действуют две машины. Левосторонняя машина похожа на современный компьютер. Она оперирует с отдельными элементами, образуя из них некоторые правильные последовательности, соотносит эти последовательности с реалиями внешнего мира и некоторыми реалиями внутреннего мира (с левосторонним компонентом пространства «Я»), планирует предметную деятельность во внешнем мире и анализирует накопленный опыт. Она создает классификацию всех знаний, накопленных в процессе жизнедеятельности, опирающуюся на вербализованные признаки и отношения, оперирует с формально-логическими системами и делает многое другое, что умеет, в принципе, делать программа для компьютера.

Правосторонняя машина на компьютер совсем не похожа. Она работает параллельно, используя ассоциативный принцип. В ее операциях нет четко выраженной цели, планирования на основе этих целей, программирования последовательности операций. В этой машине текут непрерывные процессы, аналогичные волновым, и конечный результат ее деятельности никогда не фиксируется в виде единственно возможного. На сегодняшний день у нас нет технических аналогов правосторонней машины. Мы не знаем, как ее моделировать, ибо пока еще слишком немногое знаем об особенностях ее функционирования.

Сказанное ограничивает содержание книги. В дальнейшем наши модели будут в подавляющем большинстве случаев касаться левостороннего мышления, и лишь изредка мы будем соприкасаться с тем, что происходит в молчаливом правом полушарии.

 

Пралогическое мышление

Термин «пралогическое мышление» был введен в науку совсем недавно. Его не надо понимать как синоним дологического мышления. Логика в пралогическом мышлении, конечно, есть (без этого невозможен феномен мышления), но она во многом отличается от той логики, к которой мы привыкли. И прежде всего тем, что правостороннее мышление играет в пралогическом мышлении куда большую роль, чем в современном мышлении, которое развивалось от доминирующего правостороннего мышления наших далеких предков к постепенному доминированию левостороннего мышления.

В повести Уильяма Голдинга «Наследники» сделана попытка описать мышление неандертальца. Именно попытка, ибо правостороннее мышление неадекватно тексту на естественном языке. Среди неандертальцев, описанных Голдингом, некоторые уже умеют говорить, но слова пока еще находятся в зачаточном состоянии. Проще и быстрее не говорить, а «видеть внутри головы» и сопереживать с сородичами одинаковые картины, возникающие во всей их полноте и эмоциональной окрашенности. В повести небольшая группа неандертальцев сталкивается с «новыми людьми» – кроманьонцами, у которых левостороннее мышление достигло куда большей силы, чем у неандертальцев. Мотивы и цели их поведения с трудом воспринимаются даже Локом – наиболее овладевшим словом членом небольшой группы неандертальцев. Он долго наблюдает жизнь становища кроманьонцев, пытается понять систему отношений, связывающих между собой наблюдаемые, не расчлененные для него ситуации, и в какой-то момент в его сознании вспыхивает огонь прозрения. Вот как этот момент описывает Голдинг:

«Лок обнаружил „Сходство“. Сам того не ведая, он замечал вокруг некое сходство всю свою жизнь. Грибы на стволе дерева были совсем как уши, и само слово было то же самое, однако различалось в зависимости от обстоятельств, когда его никак нельзя было приложить к слуховым отверстиям по бокам головы. Теперь, мгновенно постигая столь многое, Лок обнаружил, что пользуется сходством в качестве орудия столь же уверенно, как разрубал раньше камнем сучья или мясо».

Осознание сходства как операции – это шаг Лока в сторону левостороннего мышления, отрыванию самой операции от окружающего ее контекста, ситуации. А всякое такое отчленение, изоляция есть отход от неразрывности правосторонних образов. Но процесс такого отчленения, переход к анализу отдельных частей ситуации и к понятийному мышлению растянулся на многие тысячелетия. И в наше время существуют человеческие сообщества, для которых этот процесс все еще не завершен и доминанта правостороннего мышления все еще не преодолена.

Крупнейший специалист по пралогическому мышлению Л. Леви-Брюль сформулировал общий для этого уровня развития мышления принцип сопричастности (партиципации). Вот, как он его поясняет в своей книге «Первобытное мышление»: «В коллективных представлениях первобытного мышления предметы, существа, явления могут быть, непостижимым для нас образом, одновременно и самим собой и чем-то иным. Не менее непостижимым образом они излучают и воспринимают силы, способности, качества, мистические действия, которые ощущаются вне их, не переставая пребывать в них». Это свойство позволяет, например, индейцам бореро считать, что они одновременно являются и самими собою и тождественны своему тотему-попугаю арара. Причинные связи между явлениями – не те, которые выделяются левополушарными механизмами, а те, которые носят мистический характер, вытекающий из принципа сопричастности. Как пишет тот же Леви-Брюль:

«Сознание испытывает по меньшей мере безразличие, если не отвращение к логическим операциям [2] . Пралогическое мышление является синтетическим по своей сущности. Я хочу сказать, что синтезы, из которых оно состоит, не предполагают, как те синтезы, которыми оперирует логическое мышление, предварительных анализов, результат которых фиксируется в понятиях. Другими словами, связи представлений обычно даны здесь вместе с самими представлениями. Синтезы в первобытном мышлении появляются в первую очередь и оказываются почти всегда неразложенными и неразложимыми ».

Приходится лишь удивляться тому, как Леви-Брюль сумел угадать в конце двадцатых годов, что в пралогическом мышлении ярко проявляются те механизмы восприятия мира, которые диктуются особенностями правого полушария.

Отметим еще некоторые особенности пралогического мышления, частично отмеченные Леви-Брюлем, а в остальной части – другими исследователями, работавшими позже.

1. В пралогическом мышлении тесно переплетаются коллективные мифологические представления и индивидуальные рациональные представления о внешнем мире и своем положении в нем. Мифологический компонент представлений теснейшим образом связан с правополушарными механизмами, а рациональные представления опираются на реальный опыт трудовой деятельности, реальные манипулирования с предметами внешнего мира и реальные наблюдения за его закономерностями. Симбиоз этих представлений, которые с логической точки зрения, как правило, противоречат друг другу, в пралогическом мышлении не вызывает никаких трудностей. Мир реальный и мир мифологический описываются различными законами. Если в первом возможно только то, что не противоречит жизненной практике, то во втором может быть все то, что невозможно в реальном мире. Но эти миры сосуществуют одновременно, они пронизывают друг друга, и любой предмет реального мира одновременно является предметом и мира мифологического, соединяя в своей сути и конкретную реализацию в окружающем человека мире, и символ, в виде которого он входит в неизменную систему образов мифологического мира. Поэтому становится возможным отождествление различных объектов реального мира в мире мифологическом (вспомним о представлениях бореро: они и попугаи арара одно и то же, хотя, конечно, бореро в реальном мире отличают арара от представителей своего племени).

Итак, из того, что А В в реальном мире, вовсе не следует неравенство этих объектов в мире мифологическом, а из верности некоторого утверждения в реальном мире (мифологическом мире) вовсе не следует его верность в мире мифологическом (реальном). Уже здесь впервые в человеческом сознании появляется идея о множественности возможных миров, в каждом из которых царят свои законы и свои правила рассуждений.

Какие-то осколки мифологического компонента пралогического мышления дожили и до наших дней. Когда мы читаем сказки, в которых волки разговаривают, бескрылые кони переносят героя по воздуху, не тратя на это времени, а клубок шерсти показывает правильный путь к цели, то, несмотря на то, что вся повседневная практика нашей жизни говорит, что так не бывает, мы все-таки не отбрасываем от себя тексты, противоречащие нашим знаниям о мире, а с удовольствием погружаемся в странный мир сказки. Не только сказки, но и мифы, легенды, былины донесли до нас очарование того пласта мифологических представлений, которые для наших далеких предков были насыщены той же жизненностью, как и обычные повседневные представления. И в нашей памяти мирно уживаются утверждения A и не-A, ибо они разносятся нами на разные «полочки» в соответствии с теми возможными мирами, в которых верны A или не-A.

2. Для пралогического мышления может быть сформулирован закон подобия: то, что внешне подобно, имеет одинаковую сущность и может использоваться одинаково. Изменение внешнего облика объекта, как следует из этого закона, неумолимо приводит к изменению его сущности, к потере им тех свойств, которыми этот предмет обладал вначале. Из этого закона вытекала тесная связь, которая устанавливалась между духовными качествами человека и окружающим его материальным миром. Он же лежал в основе тенденции наделения свойствами материальных объектов духовной деятельности людей. Тотемом первобытного племени могло быть не только живое существо, но и неодушевленный предмет, который в силу закона подобия, ассоциативного сходства с какими-то частями человека или элементами его деятельности становился заместителем человека.

Можно сказать, что закон подобия, применяемый некритически, порождал тот непрерывный поток ассоциативных замещений, который столь характерен для потока образов, рождаемых правым полушарием.

3. В пралогическом мышлении память играет особую роль. Образы правого полушария, которые мы уже сравнивали с кадрами фильма, составляют основу этой памяти. Она играет более важную роль, чем вывод. Вспомнить что-то аналогичное или ассоциативно связанное с текущим образом-ситуацией – это значит и осуществить своеобразный вывод. Если что-то вспоминается вслед за мелькнувшей в сознании картиной, то фиксируется зависимость этих представлений. Закон превращения соположения во времени следования факторов в каузальную связь их, конечно, логически не оправдан. Но именно он позволял людям, находящимся на стадии пралогического мышления, заполнять огромные пробелы в их знаниях о взаимосвязях в окружающем мире. Этот закон обеспечивал надежность поведенческих решений в ситуациях, где человек впервые сталкивался с явлениями и фактами. Но законы коллективных представлений и накопленный собственный (пусть ошибочный!) опыт помогали ему принять решение, для которого не было никаких логических обоснований.

4. Люди, у которых правое полушарие доминирует над левым, эмоционально весьма чувствительны. Именно поэтому в их памяти так ярко запечатлеваются образы-ситуации. Высокая эмоциональность тех, для кого характерно пралогическое мышление, несомненна. Особенно легко возбуждаются в них аффекты страха и гнева. На фоне этих аффектов фиксируется классификация знаний об окружающем мире и своем месте в нем. Изгнание за нарушение табу из племени, как правило, приводит к смерти, ибо интеграция себя и рода настолько высока, что изгнание вызывает волну страха, превышающую границу возможного. Отсюда вера в то, что сохранение табу обеспечивает сохранение психологического гомеостазиса существования, чувства слияния с родом или племенем в единый организм. Сохранение табу – основа неизменности жизни, статичности ее. Всякое изменение опасно, ибо с каждым изменением меняется сущность вещей и самого мира. Отсюда стремление к таким действиям и решениям, которые не противоречат жесткой системе ограничений, идущих из мифологических представлений даже тогда, когда реальный мир и реальные представления сигнализируют о бессмысленности или опасности принимаемых решений. Критерием выбора тут служит не прагматическая польза или верность принимаемых решений, а их соответствие принятой без всякой критики системы табу.

5. С самого начала развития сознания и самосознания, сначала коллективного, а потом и индивидуального, возникли оппозиционные противопоставления, которые мы будем (по причинам, которые станут ясны позже) называть оппозиционными шкалами. Первой такой оппозицией является противопоставление МЫ – ОНИ. Кто же эти МЫ и ОНИ? На этапе образования первобытных орд и племен, когда индивидуальное мышление еще всецело сливалось с коллективным, МЫ характеризовало представителей той общности, к которой принадлежал индивид. Все, кто входит в состав МЫ, живут по одним и тем же законам, в рамках ограничений одних и тех же табу. А если кто-то пользуется иными законами, то он находится в оппозиции к тому, как надо жить. Он не может принадлежать к МЫ, и поэтому он не-МЫ, а следовательно, ОНИ.

Такая шкала порождает совокупность разделенных пространств МЫ и не-МЫ, свойства которых различны. Это позволяет считать, что ОНИ находятся вне наших законов, вне нашего опыта и ИМ можно приписывать все, что угодно. Так появляются живущие где-то далеко люди с пёсьими головами, фаги, пожирающие все вокруг, и другие ОНИ. Возникает форма рассуждения, основанная на этой оппозиции, оправдываемая ею: «ОНИ не такие, как МЫ, и, следовательно, ИХ надо уничтожать». В более поздней форме эта схема становится менее жесткой.

Оппозиционные шкалы типа МЫ – ОНИ не исчерпывают всех типов оппозиции. В силу свойств правостороннего мышления идея бинарной оппозиции начинает переноситься и на другие объекты, создавая как бы образующие, относительно которых упорядочивается статическая картина мира. Возникают оппозиции: правый–левый, мужской–женский, восток–запад, верх–низ, внутри–снаружи и т.п. В силу ассоциативности правостороннего мышления все эти оппозиционные шкалы в каком-то смысле эквивалентны. Правое начинает отождествляться с мужским и верхом, левое – с женским и низом. Возникает единая система противопоставлений, в которых концевые точки оппозиционных шкал описывают дуалистическую картину мира, сводясь к разбиению всего пространства на пространства «МЫ» и «не-МЫ».

И до наших дней в народных поговорках, пословицах, заповедях мы легко обнаруживаем остатки рассуждений, опирающихся на оппозиционные шкалы, концы которых соотнесены с нашим, дружественным нам пространством и пространством враждебных нам ОНИ. Вот примеры из румынского фольклора, записанные в XIX–XX веках: «Когда кукушка поет слева – нехорошо, когда справа – все пойдет хорошо», «Если весной увидишь ангела в небе, во время жатвы у тебя не будет болеть поясница, если на земле, то будет» или «Если землетрясение бывает днем – к богатству, ночью – к убытку».

Значительно позже бинарные шкалы начинают превращаться сначала в тернарные, а затем и в шкалы с еще большим числом позиций. Такое превращение приводит к переходу от неподвижного и неизменного мира мифологических представлений к динамическому, постоянно изменяющемуся миру реальностей. На рис. 1 показано, как оппозиционная шкала МЫ – ОНИ превращается в тернарную шкалу МЫ – ВЫ – ОНИ. Кто же такие эти ВЫ? Они возникают в зоне столкновения МЫ и ОНИ и служат посредниками между двумя ранее резко отделенными друг от друга общностями (рис. 1, а). Постепенное сближение МЫ и ОНИ приводит к узнаванию друг друга (рис. 1, б). Возникает контакт людей. Все люди имеют нечто общее, ибо мифологические представления всех народов и племен древности развивались по общим схемам, порожденным похожими жизненными условиями существования и общностью механизмов мышления.

Рис. 1.

Когда относительно недавно состоялся первый контакт маленькой группы людей, живших на одном из Андоманских островов, с представителями современного человечества, то ни те, ни другие не сомневались, что перед ними существа, близкие им. Это был контакт различных культур, но это был контакт людей. Наступает момент, когда МЫ и ОНИ начинают контактировать, и тогда возникают ВЫ, которые еще МЫ, но уже не ОНИ (рис. 1, в). ВЫ характеризуют динамику, переход ИХ в НАС. Это может быть приход жены из другого племени или превращение ребенка во взрослого после обряда посвящения (инициации). Но ВЫ может характеризовать и обратный переход от НАС к НИМ: изгнание из племени, уход женщины племени к мужу в другое племя и т.д.

Подобно этой тернарной шкале, на которой появляется пограничное значение ВЫ, возникают ассоциативно связанные с нею тернарные шкалы с пороговыми значениями: верх – низ, внутри – снаружи, свет – тьма и т.п. С реальными объектами (порог дома, окно, перекресток дорог, граница леса и т.п.), которые выступают в виде центральной позиции на бывших бинарных оппозиционных шкалах, начинают связываться мифологические представления и обряды. А за ними возникают и рассуждения, опирающиеся на свойства мифологизированных пограничных элементов. В том же корпусе румынских фольклорных наставлений, примеры из которого уже приводились, есть и такие: «Не смотри внутрь дома через окно снаружи, потому что он разрушится» или «Кто на этом свете сделает колодец, у того будет вода на том свете».

 

Дети, родители и взрослые

Слова, вынесенные в заголовок этого раздела, не надо понимать буквально. За ними скрывается нечто иное. Именно эти термины использовал известный американский психотерапевт Е. Берне, создавший теорию трансакционного анализа для объяснения поведения людей в конфликтных ситуациях. Здесь не место разбирать эту теорию, подвергать ее критике или защищать. Это не дело автора. Судить о трансакционном анализе должны специалисты. Но для нашей цели весьма интересны и любопытны отдельные положения, высказанные Е. Берне и его учениками. Они имеют непосредственное отношение к схемам человеческих рассуждений, как право-, так и левосторонним.

По мнению сторонников трансакционного анализа, в каждом из нас одновременно сосуществуют как бы три личности, названные в этой теории «ребенок», «родитель» и «взрослый». В любой момент нашей жизни одна из этих ипостасей является доминантной, диктуя нам присущий ей стиль поведения и общения. От того, сколь часто в качестве доминанты выступает та или иная ипостась, люди по своему поведению приближаются к ребенку, родителю или взрослому.

Три ипостаси, показанные на рис. 2, следуя традиции трансакционного анализа, будем обозначать соответственно С, Р и А.

Рис. 2.

Для нас интересно различие между ипостасями с точки зрения разных знаний, связанных с ними, и разных используемых ими схем рассуждений. Пласт знаний С невербален. Это эмоциональные переживания, накопленные человеком примерно до пятилетнего возраста, когда его речь окончательно сформировалась. Данный пласт знаний во многом подобен тем картинам, которые проносились в мозгу Лока – неандертальца из повести Голдинга. Ребенок, еще не овладевший речью, так же, как Лок и его сородичи, «видит картины в своей голове», и в этих картинах неразрывно связаны реалии внешнего мира и те эмоциональные переживания, которые им сопутствуют. Этот пласт знаний порождается не только структурами правого полушария мозга, относящимися к новой коре, но и глубинными структурами мозга. В своей книге «Драконы Эдема» К. Саган говорит о той роли, которую играют эти структуры, объединенные в лимбическую систему (гипофиз, гиппоталамус, гиппокамп и миндалина), на первых порах нашей жизни. Сильные и яркие эмоции, сновидения, наполненные звуками, красками и запахами (огромно значение запахов для порождения эмоций), страх и ужас, радость и восторг – все это порождение лимбической системы, запечатлевающей в памяти индивида детские знания.

Родительские знания лежат где-то на границе между вербальными и невербальными знаниями. Это весь пласт знаний, воспринимаемых нами в период нашего детства без всякой критики. Вера, а не критическая эмпирическая убежденность, лежит в основе этих знаний. Зачастую они также имеют яркую эмоциональную окраску. Но эмоции здесь несколько иные. Гнев и ярость, бурные страсти и саднящие душу противоречия, презрение и бесчувственность сопровождают этот пласт знаний, в образовании которых кроме новой коры левого и правого полушарий принимает участие глубинное структурное образование, которое К. Саган называет R-комплексом. По его мнению, эта часть мозга досталась нам от рептилий, и она все еще переживает те думы, которые принадлежали динозаврам. R-комплекс играет определяющую роль в агрессивном поведении, чувстве собственной территории, он является основой возникновения оппозиции МЫ – ОНИ. В утверждениях, связанных с родительским пластом знаний, содержатся все табу, все мифологические представления о мире и своем месте в нем. Беспрекословное выполнение этих указаний – основа манипулирования с родительскими знаниями.

Знания взрослого целиком принадлежат левому полушарию. Это осознанно добытые индивидуумом знания, которые осмыслены критически (возможно, проверены практикой), хранящиеся в памяти не в качестве пассивного корпуса сведений, а как совокупность фактов и процедур, нужных для повседневной деятельности в реальном мире. К этому же пласту относятся и некоторые правополушарные знания, которые либо не вербализируются, либо вербализируются с большим трудом. Это те знания, которые практически отсутствуют в виде текстов на естественном языке и не входят в многочисленные учебники по различным сторонам человеческой деятельности. Обычно мы их называем навыками, уменьем, профессионализмом. Умение танцевать, изготовлять особо сложную деталь, ездить на велосипеде и многое другое нельзя объяснить ученику с помощью текстов, порождаемых левым полушарием. Единственный вид овладения ими – это подражание, сопереживание вместе с учителем самого процесса.

Три различных пласта знаний порождают три различных класса схем рассуждений. Для детского пласта это даже не рассуждения, а некоторые переживания или сопереживания. Наиболее показательна схема рассуждения «Хочу ?». А если для получения ? необходимо, чтобы сначала было ?, т.е. необходимы посылки ? для получения ?, то детский способ рассуждений таков, что существование ? просто постулируется. Вот пример рассуждения, основанного на детском пласте знаний:

– Купи мне велосипед, как у Андрея!

– Но он же велик для тебя. Вот вырастешь, тогда куплю.

– Купи! Я уже вырос.

Рассуждения, характерные для пласта знаний Р, совсем иные. Эти рассуждения, как уже говорилось, основаны на вере, на авторитетах, на традициях. Исходные посылки ? в схеме рассуждения «Если ?, то ?» даже не проверяются. Их наличие вечно. Поэтому ? всегда может быть выведено. Если выводы, опирающиеся на знания пласта С, можно было бы назвать эмоциональными правилами, ибо в основе требования на получение ? лежит сильное эмоциональное желание этого, то выводы, опирающиеся на пласт знаний Р, можно назвать мифологическими или религиозными правилами. В этих выводах посылки ? порождены слепой верой в их истинность. Вот, например, как говорится о необходимости этой веры в «Книжке индийского мышления» А.Ч. Бхактиведанты Свами Прабхупада, изданной в наши дни:

«Ведические принципы принимаются как неопровержимые, так как они не могут содержать ошибок. Это значит принимать… В Индии, если один говорит другому: „Ты должен поступать так!“ – другой человек может переспросить: „Почему ты так думаешь? Разве это ведическое предписание, что я должен следовать тебе без каких-либо доказательств?“ Ведические предписания нельзя извращать. В конечном счете, если вы внимательно изучите значение этих предписаний, то найдете, что все они безошибочны».

Следуя рассуждениям родительского уровня, первобытные охотники перед охотой танцуют вокруг изображения животного или духа зверей. Эта схема может быть выражена в виде следующей сентенции: «Все наши предки плясали перед выходом на охоту, и из этого следовала удача на охоте». Желание удачи велико, но для того, чтобы для ее возникновения обеспечить все необходимые посылки, надо не только реализовать все свое умение и применить практические знания из пласта А, но и выполнить все то, что проистекает из пласта Р. Современный человек, идущий на экзамен или в другое место, в котором будут решаться важные для его будущности вопросы, на пожелание «Ни пуха ни пера!» отвечает «Пошел к черту», даже не задумываясь, что этот обмен репликами восходит к тому пласту знаний Р, который весь пронизан мифологическими представлениями.

С правилами, зафиксированными в схемах такого рода, тесно связан еще один закон, характерный для пралогического мышления. Это закон отказа от отрицательных примеров. Когда магические обряды приносили пользу, то положительный результат приписывался магическим действиям. Если же вместо пользы возникал вред, то это вовсе не заставляло критиковать магические посылки. Дело объяснялось проще: кто-то применил более сильную магию против или магические действия были выполнены без соблюдения всех необходимых условий. Незыблемость посылок не мог поколебать никакой отрицательный пример.

Рассуждения, опирающиеся на знание А, это обычные рациональные рассуждения, выводящие ? при условии, что все посылки подвергнуты критике и не отклонены субъектом.

Схемы рассуждений типа «Если ?, то ?», принадлежащие трем различным ипостасям человека, можно сопоставить со схемой, показанной на рис. 3. Из этой схемы видно, что на уровне Р посылки ? находятся где-то в прошлом, а заключение ? присутствует в настоящем. Это прошлое может быть столь далеким, что ? просто забыты, и реализуется редуцированное правило вывода, утверждающее, что имеет место ?. На уровне С ? находится в будущем. Это очень желаемая цель, а наличие ? постулируется в настоящем, оправдываемое желанием ?. Наконец, на уровне А действует обычная схема, в которой и посылки, и заключение реализуются в настоящем, либо посылки и заключения отнесены к различным временам, но верность этих посылок и верность связи между ? и ? субъект четко и критически осознает в настоящее время.

Рис. 3.

Интересно посмотреть, как взаимодействуют между собой два человека с точки зрения той доминирующей ипостаси, которая у них имеется. На рис. 4 показано взаимодействие, которое в трансакционном анализе называется параллельной трансакцией (трансакция – это любой акт взаимодействия людей, который является элементарным, т.е. не разложим на более простые трансакции). На рис. 4, а показана параллельная трансакция для уровня С. Уже говорилось, что на этом уровне вербальное общение практически отсутствует. Трансакции уровня С – это совместные эмоциональные переживания, что-то вроде того, когда неандерталец Лок одновременно с членами своей орды переживал одни и те же картины, которые «виделись в голове». Когда маленькие дети, скатываясь группой с горки, оглушительно совместно визжат или когда, оказавшись в темноте, они инстинктивно прижимаются друг к другу, испытывая общий страх, то это и есть трансакция, показанная на рис. 4, а. В ней могут участвовать не только дети. Взрослые также могут получить общее эмоциональное переживание (например, от совместного слушания музыки), для которого вербализация, как правило, не нужна.

Параллельные трансакции на уровне Р (рис. 4, б) чаще всего вербализируются, хотя эта вербализация очень своеобразная и относится к тому типу диалога, который характеризуется поддержанием разговора при минимальных затратах на проникновение в смысл того, что говорит собеседник. Примером такого «разговора» может служить следующий диалог между случайными попутчицами в поезде:

– Посмотрите на этих парней! И это современная молодежь!

– Да, конечно, когда мы с вами были молодыми, так вести себя никто бы себе не позволил.

– Вот именно. А разве прилично так одеваться, как они?

– Совершенно с вами согласна. Это не одежда, а просто балаган какой-то. Они делают это, как нарочно.

– И ведь, знаете, курят…

Подобный диалог можно продолжать сколь угодно долго. Ведь тема неисчерпаема, а мнение собеседниц, их знания, основанные на пласте Р, во многом однотипны.

Параллельные трансакции на уровне А (рис. 4, в) куда интересней и содержательней. При таких трансакциях собеседники сообщают друг другу новые знания, получая удовольствие от этого процесса, отстаивают свою точку зрения в споре, ведущемся на честной основе, координируют совместную деятельность.

Рис. 4.

Кроме параллельных трансакций бывают еще непараллельные, когда взаимодействующие персонажи обладают различными ипостасями. На рис. 5 показано несколько случаев такого взаимодействия, приводящего к определенным схемам диалога. Проиллюстрируем эти случаи конкретными примерами. Буквы при диалогах соответствуют буквам на рис. 5. Первая реплика принадлежит персонажу 1, вторая – персонажу 2.

Рис. 5.

а) – Посмотрите на этих парней! И это современная молодежь!

– Ну, что вы! Вполне хорошие парни. Наверняка, как и мы, размышляют о жизни, учатся, работают. Это в вас просто проявляется обычное заблуждение, что каждое новое поколение хуже предыдущего, потому что непохоже на него.

б) – Дорогая, ты не знаешь, где моя шляпа?

– Там, где ты ее бросил! Ты никогда не можешь ничего класть на место.

в) – Дорогая, ты не знаешь, где моя шляпа?

– Почему ты вечно мной недоволен и кричишь на меня?

г) – Иди, убери свою комнату! Никак от тебя нельзя добиться порядка

– Не приказывай мне! Я уже не маленькая, хватит! Не ты тут хозяйка, а папа!

д) – Извини, папа. Я обязательно к завтрашнему утру должен закончить эту работу.

– Почему ты вечно все оставляешь на последний день?!

Как видим, основой высказываний при непараллельных трансакциях могут быть как правосторонние знания уровней С и Р, так и знания, относящиеся к уровню А. Это порождает разнообразие схем, приведенных выше. Оно может быть расширено за счет привлечения иных вариантов непараллельных трансакций. Непараллельные трансакции порождают специальные схемы человеческих взаимодействий, которые можно назвать трансакционными играми.

В конце этого раздела упомянем еще об одном виде трансакций – скрытых трансакциях. Примеры таких трансакций приведены на рис. 6. При скрытых трансакциях вербализуется одна связь, но истинная связь скрывается за этой внешней оболочкой. Приведем два диалога, иллюстрирующие схемы, показанные на рис. 6. Как и ранее, сами диалоги помечены теми же буквами, что и схемы на рисунке.

Рис. 6.

е) – Куда ты припрятала мои очки?

– Ты что, ослеп! Вот же они, лежат прямо перед тобой!

Внешне персонаж 1 обращается к персонажу 2 на уровне А , но употребленный им сознательно глагол «припрятала» показывает, что он выражает свою обиду тем, что жена вечно перекладывает его вещи на другое место и ему трудно их найти. Отсюда скрытая трансакция с уровня Р к уровню С собеседника.

ж) Используя крышку полированного стола, покрытого слоем пыли, муж пишет жене на столе «Я тебя люблю». Это высказывание внешне выглядит как обращение к жене с приглашением к параллельной трансакции на уровне А . Но скрытая трансакция при этом иная: «Хорошо бы, хотя бы изредка, убираться в доме!»

з) Исходная ситуация аналогична предшествующей, но скрытая трансакция мужа: «Не сердись за шутку, содержащую упрек».

и) На выставке молодой художник говорит симпатичной девушке, которая заинтересовалась его работами:

– Самые хорошие мои работы не здесь, а в мастерской. Приходите ко мне сегодня вечером, я вам их покажу. Девушка, которой понравились не только (а может быть, и не столько) картины, но и их автор, отвечает:

– Это приглашение для меня очень лестно. Я приду.

Скрытые трансакции, как и непараллельные, лежат в основе многих человеческих рассуждений, причины и посылки которых скрыты внешним слоем высказываний. При незнании скрытого подтекста эти высказывания часто кажутся лишенными логики.

 

Как рассуждает ребенок

Какие наблюдения можно сделать, изучая как ребенок овладевает мышлением? Какие тайны приоткрываются в знаменитом возрасте «от двух до пяти»?

Период «от двух до пяти» особый. Это переходный период, на котором доминанта правого полушария постепенно под влиянием развития речи и научения манипулированию со словами, заместителями реальных предметов, постепенно сменяется доминантой левого полушария. И лишь очень немногие из детей – будущие поэты, музыканты и некоторые другие проходят через горнило этих лет, сохраняя доминанту правого полушария.

Мы уже говорили, что мышление ребенка до овладения речью строится на основе правосторонних механизмов. Но вот в его речи стали появляться отдельные звуковые цепочки. Это означает, что в левом полушарии начала активизироваться та ее часть, которая связана с порождением составляющих звукового кода. Из огромного числа звуков начинают формироваться устойчивые классы – фонемы. Для того чтобы фонемы возникли, требуется выделить ряд признаков, по которым звуки объединяются в классы. Затем возникает слово. Но его категориальное значение размыто, текуче, слово еще вплавлено в ту ситуацию, в которой оно встретилось. Если малыша спрашивают: «Где бабушка?» и он поворачивается к фотографии, висящей на стене, делая указательный жест рукой, то, если ему задать тот же вопрос, предварительно убрав фотографию, он снова в ответ на него будет поворачиваться и указывать рукой на место, где эта фотография висела. На этом этапе слово еще накрепко связано с ситуацией, неотделимо от нее.

Отделение слова от образа-ситуации происходит в возрасте где-то от полутора до двух лет, когда наступает овладение морфологией языка. Это период словотворчества, в недрах которого слова начинают сортироваться по морфологическим признакам. Возникают слова для обозначения предметов, отношений между ними, признаков и действий. Возникают первые классификационные схемы – зачаток использования знаний о мире для определения понятий и самых простых выводов. Не обладая еще способностью выделения категориальных признаков, мышление ребенка на этом этапе относится к тем типам, которые в начале этой главы мы назвали конкретно-ситуационным и эмпирическим.

Когда малыша подобного возраста просят определить, что такое собака, он может, например, показывая на место укуса сказать: «Она меня вот сюда укусила». Конкретные и категориальные совокупности часто сосуществуют одновременно:

– Скажи, Андрюша, кто водит паровоз?

– Машинист. Дядя такой, он в будочке сидит.

– А кто ломает игрушки?

– Петька. Он нехороший.

И лишь постепенно, когда категориальное мышление становится преобладающим, на последний вопрос ребенок может ответить словом, сотворенным им в этот момент: «Ломатель».

В процессе дальнейшего развития ребенок последовательно овладевает различными типами высказываний. Сначала у него появляется способность к номинации, т.е. называнию предметов, затем он учится высказываниям, в которых локализуется местонахождение предметов. Чуть позже возникают императивы, в которых содержатся просьбы и приказания о тех или иных действиях. Затем возникают формы высказываний, предназначенных для описания различных событий и ситуаций. На этом этапе возникает возможность замещения невербальных образов-ситуаций правого полушария их вербализованными обедненными описаниями левополушарного типа. Потребность в коммуникации, общении компенсирует это обеднение, а сама коммуникация происходит на положительном эмоциональном фоне. На следующем шаге становится возможным выражение отношений между частями предметов и ситуаций, а также отношений принадлежности. Почти одновременно возникают тексты, в которых описываются качества тех или иных предметов, их прагматические и категориальные признаки. И лишь после этого ребенок овладевает такими сложными высказываниями, как вопрос или отрицательное утверждение.

Наблюдения за развитием естественных языков, сопоставление их в генетическом плане наводит на мысль о том, что путь развития человеческого мышления в разных местах земли с неизбежностью проходил одинаковые ступени, зафиксированные в языковых средствах. Этот путь пока еще не до конца ясен, многие участки его еще не исследованы, но в самом общем виде он включает в себя следующие семь этапов.

1. Улавливание связи между предметами или фиксация ее отсутствия при самом общем и недифференцированном понимании связи.

2. Выявление поссесивной связи, т.е. связи во времени следования одних событий или ситуаций за другими.

3. Выявление партетивной связи, т.е. связи типа часть-целое или целое-часть.

4. Выявление контактно-дистанционных связей как во времени, так и в пространстве, т.е. введение отношений типа раньше, позже, далеко, соприкасаться и т.п.

5. Выявление связей объектно-субъектного уровня, с помощью которых становятся возможными высказывания о реалиях, находящихся вне субъекта, и его взаимоотношениях с ними.

6. Введение пространственных связей с отношениями типа снаружи-внутри, большой-маленький, далеко-близко.

7. Введение и использование темпоральных (временных) отношений, отличных от дистанционных.

Эта совокупность этапов структуризации внешнего мира описывает постепенный переход от мира, в котором мифологическое и реальное тесно переплеталось и взаимодействовало, к миру, где эти два представления оказываются резко разделенными. В конце этой эволюции правое и левое мышление отделяются друг от друга, и возникает доминанта левого над правым.

Дети в своем развитии как бы повторяют движение по этим этапам, постепенно овладевая тем, что составляет основное достижение современного человека – понятийным мышлением.

 

Особенности человеческих рассуждений

Пора подвести некоторые предварительные итоги. В этой вводной главе сделана попытка дать эскизный очерк тех оснований, на которых строится человеческое мышление, и, в частности, человеческие рассуждения. Сформулируем все сказанное выше в виде набора кратких утверждений.

1. Обычное представление, что мышление человека рационально, что все рассуждения человека имеют вербализуемые посылки, в корне неверно. Рациональный компонент в мышлении занимает определенное место, а вербализуемый компонент – лишь небольшую часть этого места. Человеческие рассуждения основываются не только на левосторонних механизмах, но и на механизмах, характерных для правостороннего мышления. Эмоциональные рассуждения, рассуждения, опирающиеся на родительский пласт знаний, рассуждения на основе скрытых от вербализации аналогий и ассоциаций порождаются правосторонними механизмами и не погружаются в рациональные логические схемы. Вот пример диалога врача-психотерапевта с пациентом, у которого ассоциации и аналогии столь случайны и необоснованны, что его умозаключения строятся вне привычной человеческой нормы (диалог приведен в одной из статей известного специалиста в этой области А. Добровича). Реплики врача и больного маркированы буквами В и Б.

В.: Чем вы встревожены?

Б.: Я знаю, меня хотят убить.

В.: Почему вы так думаете?

Б.: Когда я шел домой, на улице стоял неизвестный человек.

В.: Что это значит?

Б.: Он хотел меня убить.

В.: Почему вы так думаете?

Б.: Он держал в руке пачку «Беломора».

В.: Что это значит?

Б. (со слезами на глазах): Убийство.

В.: Почему?

Б.: «Беломор» означает белый мор, гибель.

В.: Означает ли это еще что-нибудь?

Б.: Вообще, это название канала. Но в данном случае – намек, потому что меня хотят убить.

Цепь ассоциативных связей может оказаться зашифрованной и в текстах людей вполне здоровых, но с неподавленными механизмами правополушарного мышления. Поэзия и проза поэтов дают тому немало примеров. Достаточно открыть прозу или стихи Цветаевой, Мандельштама, Вознесенского, чтобы убедиться в огромном богатстве ассоциаций, сцепляющих между собой отдельные образы, картины и мысли.

2. Для выводов на уровне знаний ребенка и родителя (уровни С и Р в трансакционном анализе) характерна не полная форма вывода, а усеченная. При выводе на уровне Р посылки могут полностью или частично отсутствовать, подразумеваться или даже не осознаваться. В этом случае ? начинает выполняться всегда, когда некоторая ситуация пригодна для этого процесса. Ситуация не есть истинная посылка ?, вызывающая ?, а лишь маркер той ситуации, в которой «Если ?, то ?» когда-то имело место. При выводе на уровне С посылки ? порождаются не реальностью или убежденностью, что они имеют место, а желанием достижения ?. Такие усеченные формы вывода чрезвычайно распространены в человеческой практике.

3. В основе многих рассуждений лежат преобразования на шкалах, с которыми соотносятся элементы рассуждения. На эти шкалы проецируются знания человека об окружающем мире и о себе самом. В этой главе подробно рассказано лишь об оппозиционных шкалах, но далее будут описаны и иные типы шкал.

Приведем в качестве примера три шкалы, показанные на рис. 7. Первая является шкалой тяжести уголовных преступлений. Чем правее лежит точка на этой шкале, тем более тяжелым считается преступление. На второй шкале отмечены сроки наказания, назначаемые за совершенные преступления, а на третьей шкале в некоторых условных единицах отмечены оценки способности заключенного к полному исправлению после наказания. Эти три шкалы на рисунке соответственно обозначены буквами П, Н и И. Пусть уголовный кодекс некоторой страны предписывает за преступление х1 применять наказание у1. И пусть ситуация (x1,y1) дает оценку шанса на исправление z1. Тогда если преступление х2 более серьезно, чем преступление х1 (например, x1 соответствует драке, a x2 – краже), то естественно ожидать, что наказание за кражу должно быть большим y1, а z2 должно быть меньшим, чем z1, или в крайнем случае совпадать с ним.

Рис. 7.

4. Убежденность в правоте посылок может иметь не только мифологическое обоснование, которое характерно при использовании родительских знаний, но и некоторую чисто личностную природу, связанную с отрицательными эмоциями, порожденными этими посылками. Если, например, некоторый факт вызывает у человека отрицательные эмоции, то он «вытесняет» его из зоны активности, и человек «не замечает» его существования. Поэтому и выводы, которые следуют из этого факта, субъектом не реализуются, а многие из тех выводов, которые невозможны при наличии неприятного факта, могут порождаться. Вывод может основываться на неверных посылках, которые имеются у субъекта. Например, Наполеон был твердо убежден в том, что пароходы плавать по воде не могут. Он выводил этот факт из неверной посылки, что железо тяжелее воды и никакой железный предмет на поверхности воды держаться не может. Отказ от подобных заблуждений иногда приводит к переворотам в науке, как это случилось при отказе от идеи теплорода или при отказе от истинности пятого постулата в геометрии Эвклида. Наконец, справедливость тех или иных умозаключений может определяться совокупностью морально-этических норм, принятых в данном обществе. Сентенции типа «Справедливость – благо людей» или «Какова бы не была цель, не всякие средства допустимы» характеризуют подобные рассуждения. Очень часто за этими рассуждениями стоят типовые сценарии поведения, принятые в данном социуме. Примеры: «Я на тебя обиделась. Ты даже не поцеловал меня при встрече» или «Он увидел, что рядом с ним стоит пожилая женщина с тяжелой сумкой в руках. Ему стало стыдно, он тут же встал и предложил женщине сесть».

5. Использование одновременного существования различных миров приводит к тому, что могут возникнуть рассуждения, в которых участвуют противоречивые факты. Сейчас речь идет не о том случае, когда эти факты «разведены» по непересекающимся мирам, а о том, когда они присутствуют одновременно, в одном мире. Упоминавшиеся уже бореро одновременно люди и птицы, а край леса одновременно граница царства мертвых и живых.

Но противоречивость рассуждений выступает не только в этой форме. Человек, например, в состоянии хранить в своей памяти и при случае опираться на них как на посылки совершенно противоположные по смыслу утверждения. Фольклор любого народа буквально заполнен такими противоречивыми сентенциями: «Работа – не волк, в лес не убежит» и «Всякий труд от бога» или «Делу время – потехе час» и «Солдат спит – служба идет» или «Ученье – свет, а не ученье – тьма». Можно привести и еще более шокирующие логиков-пуритан примеры, когда в одной фразе утверждается, что одновременно имеет место некоторый факт и его отсутствие. Вот фраза из стихотворения Юнны Мориц «Море»: «Оно слепое и зоркое», а вот фраза из весьма популярной песни: «Речка движется и не движется, вся из лунного серебра». И такими откровенно противоречивыми высказываниями человек оперирует с завидной легкостью, усматривая смысл там, где логики отказываются его видеть.

6. Всякое рассуждение основывается на двух началах: собственно схеме рассуждения и принципах выбора именно этой схемы. Вторая компонента рассуждения в искусственном интеллекте называется схемой управления рассуждением. О ней мы будем говорить в гл. 5. Сейчас заметим только, что когда мы говорили об эмоциональном или религиозном рассуждениях, то в этих терминах отражалось наше представление об источнике, которым данное рассуждение управляется.

7. На последующих страницах книги мы столкнемся с немалым количеством других особенностей человеческих рассуждений: размытостью и неточностью посылок, своеобразными «рассуждениями по дереву», рефлексивными рассуждениями и многими иными видами человеческих способов утверждать то или иное. А начнем мы с удивительного открытия – силлогистики Аристотеля.

 

Глава вторая. СИЛЛОГИСТИКА И ГЕРМЕНЕВТИКА РАССУЖДЕНИЙ

 

Что сделал Аристотель?

Развитие всех наук протекает в условиях возникновения множества новых идей, многие из которых оказываются ошибочными. Рождаются и умирают десятки, а то и сотни теорий, бывает, что новые данные опровергают ранее сложившиеся убеждения. Нередки случаи, когда на этих убеждениях покоилось стройное здание данной науки. Лишенное их, оно рассыпается, как карточный домик, а на его месте начинает возводиться новое здание. Так в драматических столкновениях, среди которых изредка вспыхивают гениальные открытия, кропотливым трудом десятков поколений исследователей создается и модернизируется здание той или иной науки.

Но из всего всеобщего процесса есть одно парадоксальное исключение. Существует теория, построенная одним человеком и практически сразу, которую никто не пытался критиковать или опровергать. Ее лишь уточняли и модернизировали. И хотя со времени ее создания прошло уже значительно больше двух тысяч лет, она по-прежнему занимает почетное место в науке.

В средние века автор этой теории пользовался такой популярностью, что его наверняка бы причислили к святым, если бы он не родился за четыреста лет до рождения основателя этой религии.

Это исключение – силлогистика, созданная гениальным мыслителем древности Аристотелем. На протяжении многих столетий силлогистика была единственной моделью дедуктивных рассуждений. В этом смысле она сыграла исключительную роль в становлении всех наук вообще, ибо стала для них методологией научного мышления.

Прежде, чем пояснить вновь появившиеся понятия, попробуем ответить на вопрос: какую задачу хотел решить Аристотель, создавая свою теорию? Он жил в те времена, когда научные споры были основным видом научной деятельности. «В споре рождается истина» – выражение, пришедшее к нам из эпохи этой седой древности. Только в дискуссиях и спорах можно было отстоять свою точку зрения и усвоить, что хочет сказать твой коллега. Со времен Сократа получили широкое распространение специальные виды спора – сократические беседы. В ходе такого спора доказательство выдвинутого положения защищалось с помощью ответов двух типов («согласен» или «не согласен») на любые высказывания оппонентов выдвинутого положения.

Искусство вести подобные беседы высоко ценилось. И, по-видимому, одной из первопричин исследований Аристотеля было стремление найти такие формы рассуждений, которые при правильном их использовании не нарушали бы истинности исходного положения. Истинность тут понималась не как некоторый абсолют. Идея была в другом. Как строить рассуждения, чтобы они лишь поддерживали исходное положение (в его истинности надо было убедить оппонентов), а не опровергали его? Помня о весьма популярном Сократе, Аристотель не мог не знать, что часто для показа силы своей логики этот мыслитель выдвигал заведомо ложное положение, но с помощью специально построенных софистических рассуждений убеждал слушателей в истинности выдвинутого ложного положения. Конечно, софистические рассуждения содержали скрытую ошибку, нарушали какие-то фундаментальные законы логики человеческих рассуждений. Но вскрыть их было невозможно, пока эта логика сама была не описана и не формализована.

Аристотель и его современники уже знали, что существует по крайней мере три типа рассуждений: от общего к частному, от частного к общему и от частного к частному. Идея первого типа рассуждений основывалась на том явном для людей положении, что если общее утверждение верно, то должно быть верными и частные утверждения, определяемые этим общим рассуждением. Именно такого типа рассуждения и называют дедуктивными.

Два других типа рассуждений с точки зрения истинности вывода куда менее ясны. Рассуждения от частного к общему отражают наш путь постижения окружающего мира и нас самих в нем. Общие утверждения возникают на пути обобщения частных, отражающих совокупность наших единичных опытных фактов. Такие рассуждения называются индуктивными. Истинность общего результата таких рассуждений для людей становится очевидной, если частных утверждений, подтверждающих этот результат, довольно много, а опровергающих утверждений нет. Еще более сложная ситуация складывается при переходе от одних частных утверждений к другим частным, как-то связанным с исходными. Здесь человеческая интуиция в оценке истинности результата почти бессильна. Такие рассуждения, которые мы будем в этой книге называть правдоподобными, лежат где-то на границе между допустимыми и недопустимыми формами человеческих рассуждений

Исходя из этих соображений (не по форме, конечно, а по существу) Аристотель выбрал для формализации именно дедуктивные рассуждения. Хотя и в область индуктивных рассуждений Аристотель внес определенный вклад, но он, конечно, не может сравниться с тем, что удалось сделать этому философу в области дедуктивных рассуждений.

Еще раз зафиксируем два положения, связанные с работой Аристотеля в интересующей нас области: 1) исходные посылки рассуждения являются истинными; 2) правильно применяемые приемы перехода от посылок к другим вытекающим из них утверждениям и из посылок и ранее полученных утверждений к новым вытекающим из них утверждениям должны сохранять истинность всех получаемых утверждений, т.е. истинные посылки порождают только истинные следствия.

Именно это свойство силлогистики Аристотеля, как со временем стала называться созданная им система, позволила средневековому философу и богослову Фоме Аквинату использовать теорию Аристотеля для обоснования всей христианской теологии. Сделал это он с помощью следующего приема. Поскольку по учению христианской церкви определенная часть сочинений, составляющая книги Ветхого и Нового Заветов, является боговдохновенной, то все утверждения, содержащиеся в них, являются абсолютно истинными. Их истинность не меняется. А значит, они образуют посылочный базис логической системы, в которой невозможны противоречия. Из них можно с помощью силлогистики Аристотеля порождать новые утверждения, которые также будут истинны. И если многие из этих утверждений человеческий рассудок отказывается принимать, сомневается в их допустимости, то, следовательно, рассудок земного человека слаб и не дорос еще до истинных откровений. Ведь еще на заре распространения христианского учения один из его апологетов Тер…

…их больше двух. Для получения заключения в сорите нужен многошаговый процесс, а для проверки истинности заключения не два шага (как на рис. 11–13), а столько шагов, сколько посылок имеется в сорите.

На каждом шаге при поиске заключения в сорите выбирается пара посылок, которые могут образовать одну из четырех силлогистических фигур (верхних частей схем на рис. 10). Если такая пара найдена, то она порождает по законам силлогистики заключение. Если к этому моменту еще не все множество исходных посылок использовано, то использованные на данном шаге посылки вычеркиваются из списка посылок, а вместо них добавляется найденное промежуточное заключение. Новое множество посылок рассматривается как исходное для следующего шага вывода.

Рассмотрим два примера получения заключения в соритах. Первый сорит содержит три посылки:

Малые дети неразумны.

Тот, кто может укрощать крокодилов, заслуживает уважения.

Неразумные люди не заслуживают уважения.

Чтобы начать процесс вывода, необходимо сначала привести все посылки к нормальной форме, принятой в схемах базовых высказываний в силлогистике. После этого преобразования посылки сорита примут вид:

Всякие малые дети есть неразумные люди.

Всякий, укрощающий крокодилов, есть заслуживающий уважения.

Всякие неразумные люди не есть заслуживающие уважения.

Возьмем первую и третью посылки. Если обозначить через Р класс сущностей с именем «малые дети», через М – с именем «неразумные люди», а через S – с именем «заслуживающие уважения», то получим схему взаимного расположения Р, М и S, которая соответствует схеме четвертой фигуры на рис. 10.

Рис. 15.

На рис. 15 в верхнем ярусе показаны два возможных варианта областей истинности для первой посылки. Вторая посылка такова, что ее добавление к каждой из областей первой посылки дает только одну альтернативу. Обе области, показанные в нижнем ярусе, есть области типа g (рис. 8). Это означает, что в качестве заключительного высказывания силлогизма может выступать лишь высказывание типа Е. Само заключение при этом имеет вид «Всякие, заслуживающие уважения, не есть малые дети». После этого промежуточного вывода мы имеем две посылки:

Всякие, заслуживающие уважения, не есть малые дети.

Всякий, укрощающий крокодилов, есть заслуживающий уважения.

Если теперь М – класс с именем «заслуживающие уважения» (надо помнить, что М – единственный класс, имя которого встречается в обеих посылках), то Р соответствует классу «малые дети», a S – классу «укрощающий крокодилов». Такое введение классов сущностей приводит нас к первой фигуре силлогистики Аристотеля (рис. 10). Для получения вывода можно воспользоваться тем, что показано на рис. 16. В верхнем ярусе возможна только одна область истинности, а добавление к первой посылке второй приводит к появлению двух вариантов. Эти два варианта дают область истинности, соответствующую схеме базового высказывания Е. Таким образом, окончательное заключение разбираемого нами сорита выглядит следующим образом: «Всякий, укрощающий крокодилов, не есть малые дети».

Рис. 16.

При получении заключений мы из соображений наглядности каждый раз обращались к графической интерпретации областей истинности. На самом деле для правильных модусов силлогистики Аристотеля (поскольку схемы посылок однозначно определяют схему заключения в каждой из четырех фигур) эти заключительные схемы могут при необходимости выдаваться автоматически. Например, для первой фигуры если посылки имеют тип АА, то заключение имеет тип А, а если посылки имеют тип EI, то заключение имеет тип О. Значит, при определении высказывания, стоящего в заключении, нет никакой необходимости строить области истинности высказываний-посылок. Переход к заключению может происходить чисто механически. Надо только определить по виду выбранных посылок номер фигуры, а затем обратиться к таблице правильных силлогизмов, в которой находится ответ по номеру фигуры и типам посылок. Вот эта таблица:

Первая фигура: AAA, EAE, ЕIO, AII, AAI, EAO.

Вторая фигура: ЕАЕ, АЕЕ, ЕIO, АОО, ЕАО, АЕО.

Третья фигура: AAI, IАI, АII, ЕАО, ОАО, ЕIO.

Четвертая фигура: AAI, AEE, IAI, ЕАО, ЕIO, АЕО.

Проиллюстрируем процесс такого механического перехода на примере следующего сорита:

1. Те, кто нарушает свои обещания, не заслуживают доверия.

2. Любители выпить очень общительны.

3. Человек, выполняющий свои обещания, честен.

4. Ни один трезвенник не ростовщик.

5. Тому, кто очень общителен, всегда можно верить.

Если читатели попробуют «с ходу» сказать, какое заключение следует из этих посылок, то они тут же поймут, что сделать это практически невозможно. Поэтому будем двигаться постепенно, выполняя все необходимые в силлогистике шаги. Постепенность весьма важна, ибо она позволит впоследствии сделать из анализа этого процесса важные выводы для автоматизации вывода рассуждений. Прежде всего преобразуем все посылки сорита в нормальную форму.

1. Всякий, кто нарушает свои обещания, есть не заслуживающий доверия.

2. Всякий любитель выпить есть человек очень общительный.

3. Всякий, кто выполняет свои обещания, есть человек честный.

4. Всякий трезвенник не есть ростовщик.

5. Всякий общительный человек есть человек, заслуживающий доверия.

Обратим внимание на то, что переход к нормальной форме для посылок требует прежде всего уточнения того, что за универсум объединяет все имеющиеся посылки. Каков он для нашего сорита? О каких сущностях идет в посылках речь? По-видимому, общей сущностью для всех, о ком говорится в посылках сорита, является сущность с именем «люди», как это было и в предшествующем сорите. Заметим, что если мы не хотим оперировать с «отрицательными классами» сущностей, то надо провести дальнейшую нормализацию посылок, ибо в силлогистике Аристотеля должно неукоснительно выполняться правило, согласно которому при n посылках должен быть выделен в точности n+1 класс сущностей (в силлогизме соответственно три класса S, М и Р). Посчитаем, сколько классов получилось в примере после перехода к нормальной форме представления: W1 – «нарушающие свои обещания», W2 – «не заслуживающие доверия», W3 – «любители выпить», W4 – «очень общительные люди», W5 – «те, кто выполняют свои обещания», W6 – «честные люди», W7 – «трезвенники», W8 – «ростовщики», W9 – «заслуживающие доверия».

Итак, девять классов сущностей вместо полагающихся шести. Какие из классов можно исключить из рассмотрения? Анализируя семантику имен классов, можно прийти к тому, что имеют место соотношения: W5= 1, W7= 3 и W9= 2. Из этих утверждений некоторое сомнение вызывает лишь соотношение W7= 3, так как класс тех, кто любит выпить, не есть чистое отрицание для класса тех, кто вообще не пьет. Более точно было бы вместо «трезвенники» говорить о людях, которые образуют класс с именем «не любители выпить». Но согласимся с тем, что есть. Из анализа полученной системы посылок видно, что надо либо оперировать с силлогистикой, в которой имеются «положительные» и «отрицательные» классы сущностей, либо провести необходимые преобразования, о которых мы говорили раньше, чтобы перейти к случаю традиционной силлогистики Аристотеля. Выберем второй путь.

Сохраним все высказывания, в которые не входят классы W2, W5 и W7, а высказывания, в которые они входят, подвергнем преобразованию. Тогда получим следующую систему высказываний, в которой классы сущностей обозначены соответствующими Wi , а около тех высказываний, которые подверглись пре…

На рис. 18 показана общая структура системы, позволяющей получать силлогистические выводы. Четыре блока системы выполняют следующие функции. Новые факты, поступающие в систему, попадают в лингвистический блок, который преобразует их в нормальную форму. Если вспомнить первоначальную форму посылок в сорите о ростовщиках и любителях выпить, то становится понятным, что работа лингвистического блока не столь проста. В его задачу входит не только «навешивание» кванторов «всякий» и «некоторые», но и вычленение имен классов сущностей, а также освобождение высказываний от тех слов, которые не влияют на суть той информации, которая в высказывании содержится. Лингвистический блок должен определить, говорит ли высказывание о некоторой единичной сущности или о совокупности таких сущностей.

Рис. 18.

Наконец, в задачу лингвистического блока входит расшифровка входного сообщения. Эти сообщения могут быть двух типов: факты для пополнения базы фактов системы и факты, истинность которых хотелось бы установить. В первом случае факт после его перевода в нормальную форму передается в базу фактов, а во втором – поступает в блок формирования заключения, где он выступает в качестве задания на вывод.

Значительные проблемы возникают при исключении омонимии в названиях классов сущностей. Лингвистический блок должен, например, установить, что в рамках некоторого определенного универсума «люди» имена «трезвенники» и «те, кто не пьют» относятся к одному и тому же классу сущностей. Установление подобных соотношений невозможно без учета специфики той проблемной области, к которой относятся силлогистические утверждения. В памяти лингвистического блока должна храниться достаточная информация о возможных преобразованиях имен классов сущностей.

Если очередной факт, переведенный в нормальную форму, поступает в базу фактов, то прежде чем занять в ней свое место, он подвергается проверке с помощью процедур, встроенных в базу фактов. Сначала проверяется, не содержится ли такой же факт в базе. Если подобный факт уже есть, то он не дублируется. Затем проверяется, не противоречит ли вновь поступивший факт тем, которые уже хранятся в базе фактов. Противоречивыми являются пары, отмеченные крестиком в табл. 2.

Таблица 2

Они противоречивы тогда, когда в обоих высказываниях речь идет об одинаковых классах сущностей S и Р. Галочкой в таблице отмечены те пары, для которых тип высказывания, стоящий в столбце, есть следствие того типа высказывания, которым отмечена строка таблицы.

Поэтому если, например, на вход базы фактов поступил факт Asp, а в базе до этого существовал факт Isp, то производится замена Isp на Asp. Если же в базе хранился факт Asp, а на вход поступил факт Isp, то вновь поступивший факт в базу не записывается. Высказывания с единичными сущностями всегда записываются в базу фактов, если проверка их на противоречивость прошла успешно. При проверке их на противоречивость, кроме случаев, показанных в табл. 2, анализируется еще случай возникновения двух высказываний «a есть Р» и «a не есть Р», касающихся одного и того же a.

Какие решения принимает система, если она обнаруживает противоречие между вновь поступившим фактом и теми, которые до этого хранились в базе фактов? Какому из двух выявившихся противоречивых фактов система должна верить?

На эти вопросы практически нет ответа. Возможные альтернативы: хранение всех фактов при условии, что противоречивые факты относятся к различным возможным мирам; исключение этой пары фактов из базы фактов, так как в системе нет средств для определения предпочтительности истинности того или иного факта; привлечение дополнительной информации для выбора из двух противоречащих фактов одного, истинность которого обоснована больше.

Поясним эти альтернативы на следующем примере. Пусть в базе фактов хранился факт Asp: «Всякие лошади не есть летающие существа». И пусть на вход базы фактов поступили новые факты «Пегас есть лошадь» и «Пегас есть летающее существо». Эти факты входят в противоречие с ранее имевшимся фактом о том, что лошади не летают. Принятие первой альтернативы заключается в том, что класс сущностей с именем «лошади» делится на два класса с именами «лошади, которые не есть Пегас» и «пегасы». В качестве единичных сущностей первого класса выступают те конкретные сущности, о которых системе было известно ранее (если их в системе не было, то класс «лошади» не имеет в системе конкретных представителей). В качестве единичной сущности класса «пегасы» выступает тот Пегас, который был упомянут в поступившем в систему сообщении. Факт Asp сохраняется с учетом, что S есть имя класса «лошади, которые не есть Пегас», и вводится высказывание Aq , в котором Q есть имя класса сущностей «пегасы».

При выборе второй альтернативы система должна будет стереть из базы фактов информацию о классе сущностей «лошади» или убрать из нее факт Asp. Обе эти возможности осуществить не так просто. Если производится удаление какой-то части базы фактов, то необходимо удалить и все те факты, которые прямо не связаны с классом сущности «лошади», но при образовании которых при силлогистическом выводе использовались факты, связанные с лошадьми. Ведь следы прямого упоминания класса «лошади» при таком выводе могут исчезнуть, если класс «лошади» в силлогистической фигуре занимал позицию М. Поэтому вторая альтернатива всегда требует глобальной перепроверки всех фактов, хранимых в базе, а на это уходит немалое время.

Наконец, если используется третья альтернатива, то система может, например, не воспринять факт, касающийся Пегаса, зная из каких-то побочных источников, что в памяти хранятся лишь факты, относящиеся к области коневодства, и что Пегас не является именем конкретной сущности.

Кроме чистого противоречия, выявить которое принципиально несложно, при вводе нового факта в базу фактов приходится сталкиваться и с проблемами пресуппозиции. Эти проблемы занимали важное место в исследованиях средневековых логиков. Они связаны, в частности, с тем, что истинность некоторого факта неразрывно связана с истинностью некоторых других фактов. Особенно это касается фактов, описывающих динамику событий во внешнем мире. Если, например, в систему поступает факт «Петров заболел», то после приведения его к нормальной форме мы будем иметь: «Петров тот, кто есть больные люди». Этот факт можно ввести в память системы, но при этом сама истинность этого факта предполагает, что некоторое время тому назад был истинен другой факт: «Петров тот, кто не есть больные люди». Этот факт, вытекающий из явления пресуппозиции, формально противоречит вновь вводимому факту. Здесь мы сталкиваемся со случаем третьей альтернативы. Из двух противоречивых фактов надо убрать из памяти системы первый, а второй записать в нее. С тем же явлением пресуппозиции связан и факт введения новых классов сущностей, о которых известно системе. Факт «Петр дал Ивану билет на поезд» по принципу пресуппозиции порождает совокупность высказываний вида: «Петр существует» или «Петр есть человек», «Иван есть человек», «Иван обладает билетом» или «Иван тот, кто есть люди, обладающие билетом» и т.п.

Продолжим обсуждение работы системы, структура которой показана на рис. 18. Возможны два режима работы системы: режим пополнения базы фактов и режим доказательства теоремы. В первом случае происходит добавление в базу фактов всех тех фактов, которые с помощью силлогистического вывода получаются из вновь введенного факта, и всех фактов, ранее хранившихся в базе фактов. Во втором случае формулируется теорема в виде вопроса о возможности вывода факта, поступившего на вход системы, из фактов, хранящихся в базе фактов. В процессе вывода блок формирования совместимых посылок выбирает из базы фактов пары посылок, которые образуют одну из четырех фигур силлогизма, т.е. посылок, сцепленных между собой общим классом сущностей М.

После нахождения такой пары она передается в блок формирования заключения. В этом блоке проверяется возможность вывода, т.е. возможность того, что пара типов посылок в данной фигуре силлогизма образует правильный модус. Если правильный модус не образуется, то вырабатывается требование на поиск новой пары посылок. Если же вывод возможен, то его результат сравнивается с высказыванием, являющимся целью доказательства теоремы. Если полученное заключение есть искомое высказывание, то процесс доказательства обрывается и результат, говорящий о том, что теорема верна, выдается из системы. Если этого не произошло, то полученное заключение добавляется в базу фактов и процесс поиска доказательства продолжается.

В рассмотренной процедуре возникает проблема остановки. Если нужный факт не выводится из той системы посылок, которая имеется в базе фактов, то как это узнать? Единственный возможный ответ связан с полным перебором всех сочетаний посылок, дающих фигуры силлогизма. Это же касается и случая прекращения процесса пополнения базы фактов после введения нового факта в систему.

Суммируя все сказанное, необходимо отметить, что, несмотря на внешнюю простоту процедуры вывода в силлогистике, в ней, как в капле воды, отражаются все те трудности, которые связаны с поиском вывода. Прежде всего это трудности понимания поступающих в систему сообщений, истолкования их в терминах, понятных на уровне внутреннего языка (в нашем случае это необходимость в процедурах нормализации сообщений). Затем это ряд трудностей, вызываемых процедурами проверки поступающего сообщения на согласованность содержащейся в нем информации с той информацией, которая ранее хранилась в памяти системы. Это трудности поиска, не опирающегося на какую-то цель, или при известной цели (в случае доказательства теоремы) не опирающегося на какие-либо соображения о путях движения по дереву вывода. Наконец, это трудности, связанные с прекращением процедур вывода и формированием отрицательного ответа на поставленный перед системой вопрос о выводимости.

Все эти трудности в той или иной форме будут присущи и другим системам моделирования человеческих рассуждений, ибо они являются принципиальными для всех формальных систем, частным случаем которых является силлогистика Аристотеля.

Формальная система – это четверка вида

Ф=.

Множество Т есть множество базовых элементов, исходных кирпичиков, не расчленяемых на более простые. Примерами таких элементов служат буквы (графемы) или детали в детском конструкторе. Единственное требование к элементам множества Т состоит в том, что для любого элемента за конечное число шагов можно узнать, принадлежит он Т или нет, а также отличить одни элементы от других, отождествляя одинаковые элементы.

Множество L есть множество синтаксических правил. С их помощью из элементов множества Т строятся более сложные образования, которые называются синтаксически правильными. Так, из графем возникают линейно упорядоченные сочетания, называемые словами, предложениями (для их образования используется специальный знак – пробел и знаки пунктуации), текстами; из деталей детского конструктора возникают более сложные образования, в которых отдельные элементы набора соединяются крепежными элементами.

Множество Q состоит из выделенных на основе некоторого соображения синтаксически правильных образований. Такое множество называется начальным или априорно принимаемым. Часто синтаксически правильные образования, входящие в Q, называют аксиомами. Тогда Q называют множеством аксиом.

Наконец, R представляет собой совокупность процедур, с помощью которых можно получать одни синтаксически правильные совокупности из других. Эти процедуры носят название правил вывода.

Формальные системы обладают одним общим свойством – автономностью. Если в такой системе задать все четыре множества, то она самостоятельно начнет генерировать множество выводимых в ней синтаксически правильных совокупностей. Они будут порождаться в результате применения различными способами правил вывода к совокупностям из множества Q. Сами элементы Q считаются в данной формальной системе выведенными всегда, т.е. априорно выведенными.

Легко усмотреть, что силлогистика Аристотеля и ее расширения, описанные нами, являют собой пример формальной системы. В качестве элементов Т выступают буквы, символизирующие имена конкретных сущностей и имена классов, а также символы А, Е, I и О. Синтаксические правила образуют из этих элементов нормальные формы представления высказываний Asp, Esp и т.п. В качестве исходных аксиом выступают законы силлогистики. Наконец, правилами вывода являются фиксированные выводы с одной посылкой, предназначенные для эквивалентных преобразований высказываний (например, Esp Eps), а также таблица получения заключений в правильных модусах при наличии посылок для этих заключений. Такая силлогистическая система способна при заданном множестве, в состав которого кроме законов силлогистики входит некоторое число высказываний, принятых в этой системе за априорно выведенные, породить все высказывания, которые вытекают из Q и правил вывода для силлогизмов.

Другие подходы к моделированию человеческих рассуждений, возникшие в столь же давние времена, что и силлогистика, не сумели достигнуть ее уровня. Но анализ их достижений полезен, ибо позволяет ввести некоторые типы нестрогих человеческих рассуждений, которые были отброшены силлогистикой как не отвечающие строгим логическим принципам. Ибо истина и ложь в человеческих рассуждениях это не Истина и Ложь с большой буквы, о которых говорят строгие логические теории. Но и они имеют право говорить об Истине лишь тогда, когда исходные факты, служащие посылками, не могут быть подвергнуты никакой критике. А возможно ли это? Во всяком случае, возможно ли это, когда мы рассуждаем о проблемных областях, знание о которых у нас не абсолютно? Ответ, как мне кажется, дан героем повести «Сказка о тройке» А. и Б. Стругацких Фарфуркисом:

«Действительно, что такое ложь? Ложь это отрицание или искажение факта. Но что есть факт? Можно ли вообще в условиях нашей невероятно усложнившейся действительности говорить о фактах? Факт есть явление или деяние, засвидетельствованное очевидцами? Однако очевидцы могут быть пристрастными, корыстными или просто невежественными. Факт есть деяние или явление, засвидетельствованное в документах? Но документы могут быть подделаны или сфабрикованы. Наконец, факты есть деяния или явления, фиксируемые лично мной. Однако мои чувства могут быть притуплены или даже совсем обмануты привходящими обстоятельствами. Таким образом, оказывается, что факт как таковой есть нечто весьма эфемерное, расплывчатое, недостоверное, и возникает естественная потребность отказаться от такого понятия. Но в этом случае ложь и правда автоматически становятся первопонятиями, неопределимыми через какие бы то ни было более общие категории. Существует Большая Правда и антипод ее, Большая Ложь. Большая Правда столь велика и истинность ее столь очевидна всякому нормальному человеку, каким являюсь и я, что опровергать ее и искажать ее, т.е. лгать, становится совершенно бессмысленно. Вот почему я никогда не лгу и не лжесвидетельствую».

Это высказывание Фарфуркиса должно звучать для читателя предостережением от слепого поклонения ясным и прозрачным моделям рассуждений, в основе которых лежат генераторы правильных заключений, т.е. формальные системы. Ибо в подобных генераторах вывод всегда правилен, но это ничего не говорит об истинности получаемого заключения. Истинность определяется не только правильностью вывода, обеспечиваемой самой формальной дедуктивной системой, но и истинностью тех посылок, которые были выбраны в качестве аксиом. Именно поэтому во времена Аристотеля силлогизм

казался истинным, ибо посылка «Все лебеди белые» подтверждалась, как и посылка «Все люди смертны», всем человеческим опытом, накопленным в Греции той эпохи. И понадобились сотни лет, чтобы убедиться в ложности этой посылки, ибо в Австралии были обнаружены черные лебеди. И если теперь заключение силлогизма о лебедях является явно ложным, сам способ его получения, т.е. путь доказательства, остается правильным.

 

Забытые науки

На пути развития человеческих знаний о внешнем мире возникали и исчезали целые науки. Одни из них, например алхимия или риторика, известны современному человеку хотя бы понаслышке, о других, например экзегетике, герменевтике или мантике, знает весьма узкий круг специалистов, занимающихся историей науки и культуры.

Но в последние годы отмечается возрождение интереса к этим, казалось бы, прочно забытым наукам. Появляются книги, посвященные алхимии и ее влиянию на современные представления в химии, вновь возрождаются исследования в области риторики, используемой как в теории аргументации (о которой в этой книге речь будет позже), так и в юриспруденции. Герменевтические схемы становятся предметом тщательного изучения специалистами, работающими в области семантики текстов. Поистине многое новое – это хорошо забытое старое. Очищенные от мистической шелухи, в которую они были надежно запрятаны, некоторые результаты алхимии, герменевтики или экзегетики начинают включаться в современную сумму научных сведений и методов, переживая новое рождение.

Алогичность ряда положений священных книг древности, наличие в них непонятных и многозначно толкуемых мест породили среди адептов соответствующего учения стремление к выявлению той внутренней логики и непротиворечивости, которая должна быть в «боговдохновенных» сочинениях. Упоминавшийся уже Фома Аквинский использовал для этих целей силлогистику Аристотеля. Комментаторы первых пяти книг Ветхого завета, считавшихся в иудаизме священными, избрали другие приемы рассуждений, давшие обширную талмудическую литературу, представляющую собой логические (точнее, герменевтические) комментарии к Пятикнижию и комментарии на ранее сделанные комментарии.

Нас, конечно, интересуют не те конкретные результаты, которые получили богословы при использовании разработанных ими приемов получения заключений, а сами приемы как схемы возможных человеческих рассуждений. Эти схемы распадаются на три типа: герменевтические, экзегетические и гомилетические. В герменевтических схемах заключения выводятся на основании лишь того, о чем говорится в тексте. Два других типа рассуждений для построения заключения используют внетекстовую информацию. Для получения экзегетических выводов привлекается информация, связанная с контекстом, в котором был порожден данный текст. Это может быть информация об исторических условиях создания текста, об авторе или авторах текста, о принятых во времена написания текста условностях при использовании конкретных выражений и т.п. Легко видеть, что герменевтика и экзегетика не такие уж забытые науки. По сути, все комментаторы литературных и научных сочинений, специалисты по исследованию культуры и многие другие специалисты как раз и занимаются построением рассуждений в духе герменевтики и экзегетики. Наконец, гомилетические рассуждения основаны на получении заключений, опирающихся на морально-этические и нравственные посылки, связанные с текстом и его создателями. Рассуждения такого типа порождают собственное поведение на основе истолкования текста или оценку на этой основе поведения других лиц.

В данном разделе основное внимание будет уделено герменевтическим схемам. В таких схемах происходит анализ не отдельных высказываний, как это было, например, в силлогистике Аристотеля, а всего текста, в котором существует данное высказывание. Для герменевтики важно не только то, о чем говорится в тексте, но и как устроен сам текст, как организована его структура, в каком порядке идут в нем высказывания и отдельные слова в этих высказываниях.

Рассмотрим ряд схем получения заключений, характерных для герменевтики.

1. В одном из стихотворений К. Бальмонта есть такая строка: «Все моря целовали его корабли». Эта фраза явно неоднозначна. Неясно, кто кого целует: моря корабли или корабли моря. Однако если внимание читателя специально не обратить на этот факт, то эта неоднозначность как бы исчезает. Подавляющее большинство читателей (как, по-видимому, и сам К. Бальмонт) будет считать, что именно моря целовали корабли, а не наоборот. Весьма известный пример такого рода: «Мать любит дочь» – также демонстрирует неоднозначность субъекта и объекта, но большинство людей, встречая подобную фразу, твердо уверены, что субъектом ее является мать, а не дочь. И, наконец, еще один пример: «Он встретил ее на поляне с цветами». У этой фразы три смысла в зависимости от того, где были цветы: у него в руках, у нее в руках или просто росли на поляне. Абсолютное большинство людей воспринимает эту фразу однозначно, считая, что цветы росли на поляне, а не составляли букета в руках у него или у нее.

Мы почти бессознательно учитываем при истолковании смысла русских предложений порядок слов в них и взаимную удаленность одних слов от других. Мы склонны считать, что в предложении сначала упоминается субъект, а затем объект, на который направлено действие. Мы склонны также считать, что чем ближе находятся слова в предложении друг к другу, тем теснее связь между ними. Эти психологические законы восприятия текста опираются на наш повседневный опыт работы с текстами и повседневное восприятие живой речи и отражают тот факт, что в подавляющем большинстве случаев это действительно так и бывает. А многозначно понимаемые фразы встречаются весьма редко.

Опишем ряд герменевтических схем, основанных на учете взаимного расположения слов в тексте.

1a. Обозначим через S некоторый класс сущностей, а через Si – некоторые подклассы этого класса. Если во фразе сначала что-то утверждается об S, а затем то же самое утверждается об {Si }, то заключение относится лишь к множеству {Si }. Другими словами, общее, предшествующее частному, толкуется как частное. Поясним это на следующем примере:

«Если вам хочется услышать истинную поэзию, то возьмите русских поэтов: Пушкина, Лермонтова, Тютчева и почитайте их». С точки зрения приема, который мы анализируем, заключение рассуждения нужно понимать так, что Некрасова читать не рекомендуется, ибо общее «русские поэты» предшествует частному, заданному перечислением подкласса класса «русские поэты», содержащему только трех указанных поэтов.

1б. Если частное предшествует общему, то заключение касается общего. Пример: «Если вам хочется услышать истинную поэзию, то возьмите Пушкина, Лермонтова, Тютчева, русских поэтов и почитайте их». В этом случае с точки зрения законов герменевтики почитать надо не обязательно одного из трех поэтов, чьи имена перечислены перед именем общего для них класса сущностей «русские поэты», но любого из поэтов, входящего в этот класс.

1в. Если частное заключено между двумя общими, то заключение относится к тем расширениям частного, которые сохраняют сущность этих частных. Следующий пример поясняет этот прием: «Ты можешь купить на свои деньги все, что хочешь: посуду, холодильник, гарнитур для спальни, словом, все, что тебе нужно». Из этой фразы должен следовать вывод, что можно истратить деньги на любые вещи, нужные для оборудования квартиры, но никак не на одежду или украшения.

2. Если имеются два утверждения, из которых одно относится к некоторому классу сущностей S, а другое – к некоторому подклассу класса S, то закон не всегда распространяется на этот подкласс. Возможны различные случаи.

2а. Если частный случай упомянут в контексте общего случая, то на частный случай распространяются все выводы, вытекающие из общего случая, а все пояснения к частному случаю являются истинными и для общего случая. Рассмотрим пример: «Всякая найденная вещь должна быть возвращена владельцу или передана в стол находок. Если кто-то забыл книгу, выходя из метро, то надо окликнуть его, пока он не вышел из вагона, или догнать его. Если же пассажира в вагоне не было, когда была обнаружена книга, то ее надо сдать в стол находок». Согласно правилам герменевтики, восходящим еще к толкованию Пятикнижия талмудистами, подобный текст переносит все, что сказано о книге, на любые предметы, обнаруженные в вагоне метро.

2б. Если некоторое частное утверждение общего утверждения находится с ним в тексте одновременно и содержит посылки, более частные, чем общее утверждение, то этот частный случай есть исключение из общего утверждения. Примером такой схемы рассуждений может служить вывод о том, что в общественном транспорте военнослужащий не обязан отдавать честь вышестоящему начальнику, так как в уставе одновременно содержится общее требование отдачи чести военнослужащим при встрече со старшим по званию, а также частное требование, указывающее конкретные условия (посылки), при которых честь не отдается.

2в. В предшествующем случае посылки частного утверждения входили в посылки общего утверждения, но приводили к другому заключению, отменяющему общее. Но возможен случай, когда заключение частного утверждения не только не отменяет общее, но как бы усиливает его. Проиллюстрируем это на примере закона о хищениях, который вполне мог бы быть в уголовном кодексе некоторой страны: «При хищении имущества граждан преступник несет наказание в виде тюремного заключения от двух до пяти лет. При хищении в особо крупных размерах срок его наказания от семи до девяти лет.» В этом примере второе утверждение по форме является частным, а первое общим. Однако заключение второго утверждения усиливает заключение первого.

Два последних типа герменевтических рассуждений весьма часто используются в юриспруденции, усиливая и смягчая наказания в зависимости от тех или иных конкретных посылок, входящих, как правило, в посылки общих утверждений.

3. Этот герменевтический прием рассуждения весьма распространен в юриспруденции всех стран. Если в некотором месте текста, когда говорится о чем-то и допускается, что это что-то необходимо следует из посылок q1 и q2, а в другом месте этого текста говорится о том же самом, но в качестве необходимой посылки указывается лишь q1, то и в первом случае посылку q2 можно опустить.

4. Если в тексте содержатся два утверждения, противоречащие друг другу, то либо в тексте имеется утверждение, примиряющее их, либо такое утверждение надо построить, введя в противоречащие утверждения такую посылку, которая «разводит» их и снимает их противоречивость. Этот прием весьма хитроумно использовали талмудисты для устранения вопиющего противоречия, связанного с указаниями срока употребления опресноков во время пасхи. В книге «Второзаконие» в одной и той же главе говорится, что опресноки надо употреблять в пищу и шесть и семь дней. Ситуация исключительно тяжелая. Но вот как талмудисты преодолели ее. По учению фарисеев первый сноп нового урожая торжественно приносился в храм на второй день пасхи. После его освящения в храме разрешалось есть хлеб нового урожая. Учитывая это обстоятельство, талмудисты устранили противоречие, добавив к заключениям о том, что опресноки надо есть шесть дней и что опресноки надо есть семь дней, посылки о типе муки, используемой при выпечке опресноков. Если это мука получена из зерен старого урожая, то такие опресноки можно есть все семь пасхальных дней, а если для их приготовления используется мука из зерен нового урожая, то число дней потребления опресноков, естественно, сокращается до шести.

К сожалению, процедуры поиска дополнительных посылок, «разводящих» противоречивые высказывания, до сих пор не созданы. Если бы это удалось, то многие проблемы сохранения непротиворечивости баз данных и баз знаний в современных интеллектуальных системах, а также непротиворечивости рассуждений, опирающихся на факты и знания, были бы решены.

5. Если в ряду однотипных утверждений что-то упоминается ранее, то оно автоматически переносится на все последующие утверждения. Если бы этот прием герменевтики перенести на текст известной русской сказки «Терем-Теремок», то можно было бы существенно сократить ее текст, ибо повтор всего диалога с вновь пришедшим к теремку персонажем не нужен. Достаточно лишь последней его части, отличающей его от предшествующего диалога. Правда, тогда бы потерялась вся прелесть и привлекательность этой сказки.

Наверное, читатель уже уловил суть герменевтических схем. Конечно, в отличие от строгих силлогистических рассуждений, сомнение в справедливости которых возможно лишь при очень тщательном их анализе, правильность герменевтических рассуждений можно подвергнуть критике «с ходу». Однако с их помощью удается объяснить многие особенности человеческих рассуждений, которые, как мы уже неоднократно подчеркивали, не являются в большинстве своем рассуждениями, порождаемыми формальными системами. Именно поэтому мы рассмотрим еще несколько «экзотических» схем рассуждений.

Разнообразные логические системы, родившиеся в Индии, Китае, Японии и других странах, дают немало примеров моделей рассуждений, которые не принимаются теми, кто считает необходимым, чтобы в основе логической системы дедуктивного типа лежала идея формальной системы. Здесь не место давать сколь-нибудь глубокий анализ систем Востока, в которых логика тесно переплетается с философией, а зачастую и с религией. Наша задача состоит лишь в том, чтобы у читателя сложилось представление, что многие особенности человеческих рассуждений (прежде всего опирающихся на правосторонние механизмы), никак не отражаемые в логических теориях Европы, находят место в теориях, рожденных в Азии.

Этим системам ничуть не были чужды идеи чисто дедуктивных рассуждений по типу силлогистики Аристотеля. Вот как звучит дошедший до нас из глубины веков разговор философа Махинды, посланца царя Ашоки, ревностного проповедника и распространителя буддизма, с царем Цейлона Ланка Деванампиятиссом. В этом разговоре Махинда проверяет логические способности царя Цейлона, ибо для восприятия философии буддизма, по мнению Ашоки, требуется определенный уровень логического мышления, способности к рассуждениям логического типа:

– Как называется это дерево, о царь?

– Это дерево называется манго.

– Существуют ли здесь еще деревья манго, кроме этого?

– Существует множество деревьев манго.

– А существуют ли здесь другие деревья, кроме этого дерева манго и других деревьев манго?

– Существует множество деревьев, о достопочтенный, но это деревья, которые не есть деревья манго.

– А существует ли здесь, кроме других деревьев манго и тех деревьев, которые не есть деревья манго, еще другие деревья?

– Вот это дерево манго, о достопочтенный.

– Есть ли здесь люди твоего рода, о царь?

– Здесь много людей моего рода, о достопочтенный.

– А есть ли здесь кто-либо, не принадлежащий к твоему роду, о царь?

– Да, их здесь еще больше, чем людей моего рода.

– А есть ли здесь кто-либо, кроме людей твоего рода и других?

– Это я, о достопочтенный.

Результатом этой проверки Махинда был, несомненно, доволен. Условия для распространения буддизма оказались на Цейлоне вполне подходящими, ибо царь Ланка Деванампиятисс вполне справился с задачами выделения классов сущностей и выявления тех жергоновых отношений, которые между ними имеются. Он даже оказался способным на силлогистические заключения! Этот пример показывает, что в Индии периода развития буддийского учения логика уже достигла уровня силлогистики. Однако в ней не был сделан решающий шаг: не совершился переход к замкнутой дедуктивной системе. Силлогистические заключения остались всего лишь одним из приемов для проведения рассуждений. Интересно, что в буддийской логике силлогизм был не трехчленным, как у Аристотеля (две посылки и заключение), а пятичленным. Но его пятичленность определялась не тем, что использовались сориты с четырьмя посылками, а тем, что он представлял собой как бы два силлогизма Аристотеля, сцепленные друг с другом. Рассмотрим пример такого рассуждения.

В этом рассуждении второе утверждение найдено по аналогии с первым наблюдением. Третье утверждение есть переход от частного к общему. Четвертое утверждение устанавливает связь по общности (аналогии) между первым и вторым утверждением. Наконец, общее заключение выводится из всего предшествующего. Таким образом, в пятичленном рассуждении, приведенном нами, используются одновременно индуктивные и дедуктивные рассуждения, а также вывод по аналогии.

Не чужды были буддийским мыслителям и герменевтические схемы. Они, например, широко пользовались так называемым «принципом куропаток», который звучал так: «Если в тексте о чем-то говорится как о множестве, то число элементов множества равно трем». Этот странный принцип обосновывается тем, что по закону о жертвоприношениях количество жертвенных животных (в том числе и куропаток) никак не ограничивалось. С другой стороны, имел место закон, запрещающий убийство. Коллизия этих двух требований и породила конформистский «принцип куропаток».

В философском учении школы хуаянь, процветавшей в Китае, имеются элементы логики, в которой закон тождества понимается не статично, как в силлогистике Аристотеля, а диалектически. В такой форме закон тождества звучит следующим образом: «Всякое Q есть Q и одновременно не есть Q». В учении о мире дхарм говорится:

«Мир дхарм ши это мир явлений, которые изменчивы, многообразны, отличны друг от друга, все события и предметы этого мира взаимосвязаны. Мир дхарм не является миром сущностей, неизменных и вечных. Этот мир есть некоторая единая субстанция. И оба мира неотделимы друг от друга, взаимозависимы, образуют единое неразрывное целое. Ши и ли взаимно обусловлены, взаимно тождественны и различны (выделено нами)».

В этой позиции предугаданы многие законы, которые позже стали изучаться в диалектической логике. В настоящее время эта логика находится в стадии становления, в стадии поиска формального аппарата, который позволил бы ей достичь того же уровня формализации, который достигнут в формальных логиках, отражающих человеческие рассуждения о мире явлений, в котором нет диалектических переходов. Но уже в древности философы и мыслители пытались в своих логических построениях преодолеть статичность и метафизичность описываемого мира и выдвигать положения, подобные тем, которые приняты в философской системе хуаянь или сформулированы в древнеиндийской сутре Ланкаватра: «Вещи не такие, как они выглядят, но и не другие».

Попытки ввести диалектику в схемы логических рассуждений делались, конечно, не только на Востоке, но и в Европе. Достаточно вспомнить Гегеля с его диалектическим методом. Но до сих пор так и не удалось создать формальную систему, в рамках которой описывались бы законы рассуждения, опирающиеся на диалектику. Это дело будущего. И, возможно, для этого потребуется расширение самого понятия формальной системы.

А сейчас мы переходим к описанию двух мощных формальных дедуктивных систем, порожденных наукой Нового времени. Именно эти системы впервые позволили автоматизировать ряд характерных для человека способов рассуждений, опирающихся на схему дедуктивного вывода.

 

Глава третья. АВТОМАТИЗАЦИЯ ДОСТОВЕРНЫХ РАССУЖДЕНИЙ

 

Исчисление высказываний

Под высказыванием будем понимать утверждение, относительно которого в любой момент можно сказать, является оно истинным или ложным, или по крайней мере предполагать, что ему может быть приписана такая интерпретация. Например, фразы «Пик Коммунизма есть высочайшая вершина СССР», «Все жители земли имеют рост более двух метров», «В Африке находятся более десяти еще неизвестных захоронений фараонов Египта» являются высказываниями. Первое из них истинно, второе – ложно (легко приводятся конкретные опровергающие примеры), а относительно третьей фразы мы не можем говорить, является она истинной или ложной, так как наши знания о еще не найденных погребениях фараонов пока недостаточны. Но мы вполне можем предполагать, что это высказывание, ибо оно обязательно либо истинно, либо ложно.

Не всякие фразы на естественном языке могут быть высказываниями. Например, утверждение «Девушка была очень красивой» таковым не является. Одни мужчины могут согласиться с мнением, высказанным в этой фразе, т.е. посчитать, что это утверждение истинно, но другие могут и не принять данной точки зрения, т.е. посчитать утверждение ложным. Такого рода утверждения в рамках формальной системы, называемой исчислением высказываний, не рассматриваются.

О формальной системе речь шла во второй главе, и читатели, наверное, помнят, что такие системы задаются как четверки, состоящие из множества базовых элементов Т, множества синтаксических правил L, множества аксиом Q и множества правил вывода R. Поэтому, если мы хотим рассматривать исчисление высказываний как формальную систему, то должны задать указанные четыре множества.

В качестве элементов множества Т будут выступать элементарные высказывания, обозначаемые малыми латинскими буквами. Считать или не считать некоторое высказывание элементарным, зависит от нашей воли. Как станет ясно из дальнейшего, этот вопрос не имеет принципиального значения в рамках той дедуктивной системы, которую мы строим. Для описания процедур построения производных высказываний из элементарных, т.е. синтаксических, правил надо предварительно ввести знаки логических связок. В качестве таких связок будут выступать уже известные по первой главе конъюнкция, дизъюнкция и отрицание, которые будем обозначать &, и (иногда заменяя, как и ранее, этот последний знак чертой сверху буквы, соответствующей элементарному высказыванию), а также новая связка, называемая импликацией, которую будем обозначать .

Сформулируем теперь совокупность синтаксических правил для исчисления высказываний.

1. Всякое элементарное высказывание является правильной совокупностью (будем говорить далее правильной формулой).

2. Если ? и ? являются правильными формулами, то правильными формулами являются также ?, (?&?), (? ?) и (? ?).

3. Других правильных формул в исчислении высказываний нет.

Между знаками логических связок , &, и и конструкциями естественного языка существует некоторая связь, которую проиллюстрируем на примерах. Воспользуемся стихотворением Давида Самойлова «Пестель, поэт и Анна». Вот его начало:

Там Анна пела с самого утра И что-то шила или вышивала. И песня, долетая со двора, Ему невольно сердце волновала.

В этом четверостишии можно выделить четыре элементарных высказывания: a – «Там Анна пела с самого утра», b – «Что-то (Анна) шила», с – «Что-то (Анна) вышивала», d – «Песня, долетая со двора, ему невольно сердце волновала». В скобках мы ввели субъект, отсутствующий во второй строке приведенного отрывка. Общая логическая структура всего четверостишия может быть описана следующим образом: (а И (b ИЛИ c) И d). Большими буквами мы выделили союзы, которые в явной форме присутствуют в тексте Д. Самойлова. Можно ли от этой записи перейти к логическим связкам?

Вспомним, что такое конъюнкция и дизъюнкция. Во второй главе, определяя эти связки, мы говорили, что ?&? является истинным, если истинны оба утверждения ? и ?, а ? ? является истинным, если истинно хотя бы одно из утверждений ? или ?. Такое определение связок позволяет перейти от структуры, в которой используются союзы И и ИЛИ, к записи ((a&(b c))&d), которая согласно синтаксическим правилам исчисления высказываний является правильной формулой этого исчисления. Правда, внимательные читатели могут усмотреть в этом переходе некоторую некорректность. Дело в том, что выражение ? ? является истинным и тогда, когда одновременно ? и ? истинны. Но подобный случай в нашем примере невозможен. Анна либо шила, либо вышивала. Одновременно делать то и другое она не могла. Другими словами, одновременная истинность ? и ? должна была бы давать сигнал о ложности такого утверждения, а дизъюнкция утверждает, что оно истинно. Эту ситуацию можно исправить, введя связку, называемую разделительной дизъюнкцией. Но мы этого делать не будем, так как такая связка есть комбинация более простых связок, которые мы уже ввели: ( ?&?) (?& ?).

Проверим, достигаем ли мы нужной цели с помощью данной комбинации. Если ? и ? ложны, то ложны правильные формулы ( ?&?) и (?& ?) и, следовательно, по свойству дизъюнкции ложна и вся большая формула. Если же ? и ? одновременно истинны, то опять обе конъюнкции ложны, так как в них входят ложные высказывания, получающиеся из истинных путем отрицания, и, следовательно, вся дизъюнкция опять является ложной. И лишь тогда, когда из двух высказываний ? и ? одно истинно, а другое ложно, мы получаем истинность всего высказывания. После этого уточнения правильная формула исчисления высказываний, соответствующая нашему примеру, примет вид ((а&(( b&c) (b& c)))&d).

Рассмотрим еще одну цитату из того же стихотворения: «…Если трон находится в стране в руках деспо?та, тогда дворянства первая забота сменить основы власти и закон». Введем два элементарных высказывания: g – «Трон находится в стране в руках деспо?та» и h – «Дворянства первая забота сменить основы власти и закон». Тогда логическая структура всего высказывания может быть представлена в виде (ЕСЛИ g ТОГДА h). Для перехода к правильной формуле исчисления высказываний воспользуемся импликацией. Раньше она не встречалась. По определению выражение ? ? истинно во всех случаях, кроме того, когда ? истинно, а ? ложно. Другими словами, из истинности ? в импликации, которая является истинной, всегда следует истинность ?.

Исследуем запись (g h). Если g истинно, то h должно быть истинно, если фраза, которая вложена Д. Самойловым в уста Пестеля, является истинной. Это хорошо, но что будет в случае, когда утверждение g ложно? Для импликации это означает, что как при истинности h, так и при его ложности вся фраза в целом остается истинной. Другими словами, если неверно, что «Трон находится в стране в руках деспо?та», то дворянство может менять основы власти и закона, а может этого и не делать. Всё равно сложное высказывание будет сохранять свою истинность. Если же мы потребуем, чтобы при ложности g всегда было бы ложным и все высказывание целиком, сохраняя остальные свойства импликации, то мы опять вернемся к конъюнкции.

Наверное, самым разумным с точки зрения здравого смысла было бы вообще отказаться от определения истинности или ложности выражения (ЕСЛИ ? ТОГДА ?), когда ? является ложным. Ибо для выводов в этом случае нет никакой информации. Во второй главе мы использовали знак выводимости . Вот с его-то помощью и можно формализовать случай, когда в записи g h из истинности g всегда следует истинность h, а при ложности g ничего сказать нельзя. Но знак выводимости не является логической связкой и не входит в синтаксис исчисления высказываний. Поэтому, оставаясь в рамках этого исчисления, мы вынуждены пользоваться импликацией.

И еще одно замечание, касающееся импликации. Эта связка, как и разделительная дизъюнкция, может быть сведена к комбинации других связок, имеющихся в исчислении. Читатели легко могут убедиться в справедливости замены ? ? на ? ?. Однако по ряду причин в исчислении высказываний в его классической форме импликация сохраняется как самостоятельная связка.

Не нужно думать, что переход от фраз на естественном языке к соответствующим им правильным формулам исчисления высказываний столь прост. На этом пути стоит немало трудностей, И прежде всего потому, что частицы и союзы языка типа НЕ, И, ИЛИ, ТО, ЕСЛИ и т.п. не являются однозначными свидетельствами наличия похожих на них связок. Цитата из стихотворения «Смерть поэта» Д. Самойлова иллюстрирует это положение:

И не ведал я, было ли это Отпеванием времени года, Воспеваньем страны и народа Или просто кончиной поэта.

Встречающиеся здесь И и ИЛИ не являются прямыми аналогами связок исчисления высказываний.

Мы ввели множество базовых элементов и множество синтаксических правил. Теперь необходимо ввести множество аксиом. В логике в качестве множества аксиом выбирают обычно совокупность правильных формул, которые являются общезначимыми (или тождественно истинными). Высказывания, описываемые этими формулами, таковы, что они всегда истинны. Вот пример такого множества формул:

Читатели могут сами убедиться в том, что при всех комбинациях истинности и ложности формул ?, ? и ? четыре выписанные аксиомы всегда являются истинными. Такие аксиомы принято называть абсолютными или логическими.

Перейдем к описанию правил вывода R. Вспомним, что Аристотель, создавая свои силлогистические правила, добивался того, чтобы из истинных посылок всегда следовали истинные заключения. Если в качестве аксиом используются абсолютные аксиомы, то правила вывода должны обладать тем свойством, что их применение не должно нарушать истинность. Другими словами, из тождественно истинных формул должны выводиться лишь тождественно истинные формулы. Введем, учитывая это, два правила вывода исчисления высказываний.

Первое правило носит название правило подстановки. Согласно ему в формулу, которая уже выведена, можно вместо некоторого высказывания подставить любое другое при непременном условии, что эта подстановка сделана во всех местах вхождения заменяемого высказывания в данную формулу. Такая подстановка сохраняет свойство формулы быть тождественно истинной. Если в аксиому (? (? ?)) вместо ? подставить любую формулу, например (?&?), то формула ((?&?) ((?&?) ?)) останется тождественно истинной, что легко доказывается перебором всех комбинаций истинностных значений ? и ? и проверкой того, что для всех них полученная формула остается истинной.

Второе правило называется модус поненс (лат. modus ponens) или правило заключения и выглядит следующим образом: если ? и (? ?) являются истинными формулами, то формула ? также истинна. Если ? является истинной, то истинность (? ?) означает, что ? является истинной. Поэтому правило заключения не портит истинности выводимых формул.

Мы полностью описали исчисление высказываний. Заметим еще раз, что оно устроено так, что в результате выводов из аксиом получаются лишь тождественно истинные формулы. Можно показать, что система логических аксиом может быть выбрана таким образом, что для любой тождественно истинной формулы всегда найдется цепочка выводов (логических рассуждений), с помощью которой она будет выведена из системы аксиом путем применения правил подстановки и заключения. Другими словами, может быть построена полная система аксиом, из которой будут выводиться все тождественно истинные формулы и только они. Как показали исследования логиков, таких полных систем аксиом существует много. Система из четырех аксиом, которую мы только что рассмотрели является полной. Ее предложил известный немецкий математик и логик Д. Гильберт.

Подобное свойство исчисления высказываний позволяет достаточно легко ответить на кардинальный вопрос, возникающий для любой формальной системы: принадлежит ли некоторая правильная формула к множеству формул, выводимых в данной формальной системе? Для ответа на этот вопрос надо построить таблицу, в которой в левой части перечислены все возможные комбинации значений истины и лжи для высказываний, входящих в эту формулу (легко видеть, что при n различных таких высказываниях число комбинаций будет равно 2n ), а в правой части выписаны значения истинности проверяемой формулы. Если правый столбец состоит только из значений «истина», то формула выводима в исчислении высказываний. В противном случае ее выводимость не имеет места.

Пусть, например, надо узнать, выводима ли в исчислении высказываний формула (( ? ?) ?). В эту формулу входит одно высказывание ?. Поэтому нужно проверить лишь две комбинации истинности: когда ? истинно и когда оно ложно. В первом случае по свойству импликации первая скобка является истинной, ибо ? ложно. Но тогда истинна и вся формула, ибо импликация истинна, когда истинны ее левая и правая части. Если же ? ложно, то первая скобка является ложной, так как левая часть импликации ( ? ?) истинна, а правая ложна. Но тогда вся формула является истинной. Тем самым доказано, что интересующая нас формула является тождественно истинной и, следовательно, выводимой в исчислении высказываний.

О чем все это говорит? Прежде всего о том, что процедура выводимости в исчислении высказываний конструктивно разрешима. Проверка общезначимости (тождественной истинности) формулы сводится к построению нужной конечной таблицы и перебору всех вариантов, содержащихся в ее левой части, с целью определения истинностного значения проверяемой формулы. Получение первого значения «ложь» свидетельствует о невыводимости. Если же при всех комбинациях, перечисленных в левой части таблицы, формула принимает значение «истина», то она выводима с помощью описанных выше двух правил вывода из той или иной полной системы абсолютных аксиом.

Проиллюстрируем эту процедуру еще на одном примере. Проверим, является ли выводимой формула ((? ?) (( ? ?)&?)). В этой формуле (будем обозначать ее ?) имеется три высказывания, что приводит к необходимости рассмотрения истинного значения ? на 23=8 комбинациях. Эти комбинации и соответствующие шаги по определению истинностного значения ? на них даны в табл. 3, в которой И и Л означают соответственно значения «истина» и «ложь».

Таблица 3

Появление в пятой строке в столбце ? значения Л свидетельствует о невыводимости исследуемой формулы. На этом шаге процесс вывода можно прекратить. Остальные строки в таблице приведены лишь для полноты картины.

 

«Логик-теоретик»

Так была названа программа для ЭВМ, созданная в середине шестидесятых годов американским кибернетиком А. Ньюэллом в содружестве с психологом Г. Саймоном. Она была предназначена для доказательства теорем в исчислении высказываний, т.е. для поиска обоснования тождественной истинности некоторых утверждений. Для того чтобы перейти к описанию программы «Логик-теоретик», введем предварительно понятие о равенстве двух выражений исчисления высказываний. Будем говорить, что выражения ?1 и ?2 равны между собой, и записывать этот факт обычным образом ?1=?2, если на всех возможных наборах интерпретации истинности входящих в них элементарных высказываний истинность ?1 и ?2 одинакова.

Появление знака равенства, которого не было в исчислении высказываний, не должно нас смущать. Его легко можно исключить из рассмотрения, введя формулу ((?1&?2) ( ?1& ?2)). Читатели могут проверить, что эта формула будет истинной только в том случае, когда оценки истинности ?1 и ?2 одинаковы. Тогда утверждение, что ?1=?2, становится эквивалентным утверждению, что формула ((?1&?2) ( ?1& ?2)) является истинной.

«Логик-теоретик» должен был доказывать справедливость утверждений вида ?1=?2 для различных ?1 и ?2. Однако авторы «Логика-теоретика» не пошли по прямому пути. Не стали строить таблицы для ?1 и ?2 и проверять совпадение истинности ?1 и ?2 на всех возможных интерпретациях истинности их аргументов. Ведь с ростом числа аргументов n число строк в этих таблицах растет как 2n . А. Ньюэлл и Г. Саймон пошли по пути приближения процедуры доказательства к тому, как это делают люди.

В основу процесса доказательства они положили идею ликвидации различий в формульной записи ?1 и ?2. Авторы программы составили перечень из шести различий.

1. В ?1 и ?2 различное число членов в формулах. Например, ?1=? ?, а ?2=? ?.

2. В ?1 и ?2 имеется различие в основной связке (т.е. в связке, которая выполняется последней). Например, ?1=(??) ( ), а ?2=(? ) ?.

3. Перед всем выражением для ?1(?2) стоит знак отрицания, а перед ?2(?1) его нет. Например, ?1= (? ?), а ?2=??.

4. Аналогичное различие, но оно касается не всего выражения для ?i (i=1,2), а некоторого его подвыражения.

5. Скобки в ?1 расставлены не так, как в ?2. Например, ?1=? (? ?), а ?2=(? ?) ?.

6. Записи для ?1 и ?2 отличаются порядком следования подвыражений. Например, ?1=(??) ?, а ?2=? (??).

Для того чтобы иметь возможность ликвидировать подобные различия, используются 12 преобразований формул исчисления высказываний. Первые семь преобразований носят тождественный характер, т.е. не меняют истинного значения преобразуемых формул. Последние пять верны только при условии, что левая часть их является тождественно истинной (T-выражением).

В преобразованиях использованы большие латинские буквы, которые могут соответствовать любым подвыражениям формул ?1 и ?2. Стрелки и показывают направление преобразований. (Знак есть по сути знак .)

С помощью этих преобразований можно устранять различия между ?1 и ?2, которые мы перечислили выше. Укажем в специальной табл. 4 классы преобразований F1, которые можно использовать для устранения различий. Первое различие разделено на два: различие 1’ требует добавления выражений в формулу, а различие 1’’ – вычеркивания из формулы лишних выражений.

Таблица 4

Крестики поставлены там, где можно устранить различие с помощью соответствующего преобразования.

Покажем работу программы «Логик-теоретик» на несложном примере. Пусть требуется доказать равенство ?1=?2, имеющее вид

Применим к ?1 первое преобразование из F7 справа налево. Выбор F7 определяется различием ?1 и ?2. Из ?1 необходимо убрать лишнее подвыражение С, которого нет в ?2. После этого получим

Поскольку в ?1 осталось еще выражение С, которого нет справа, то снова фиксируется различие 1’’ и ищется подходящее преобразование. Таким преобразованием является четвертое из F7. Но для его применения надо сначала использовать преобразование F1 для устранения различия 6. После этого, применяя четвертое преобразование из F7, получаем

Теперь можно применить второе преобразование из F7:

Четвертое преобразование из F7 приводит к окончательному результату

Пример, конечно, не отражает всех особенностей работы программы «Логик-теоретик». Мы несколько упростили задачу. Как видно из таблицы различий, выбор преобразования на каждом шаге далеко не однозначен. В формулах могут существовать одновременно несколько различий, а для ликвидации различия можно использовать несколько преобразований. Всякий вывод, как бы он не был организован, носит переборный характер. И успешность того или иного выбора преобразования не может быть оценена локально, в момент выбора. Поэтому программа вынуждена перебирать варианты, заходить в тупики, проходить циклы прежде, чем она сможет найти правильный путь решения. Повышение эффективности процесса вывода – центральная проблема всех автоматизированных систем дедуктивного вывода.

 

Исчисление предикатов

Исчисление высказываний не позволяет описывать дедуктивные рассуждения всех типов, в частности силлогистические умозаключения. Оно слишком бедно выразительными средствами.

Его естественным развитием является исчисление предикатов. Как и исчисление высказываний, исчисление предикатов представляет собой формальную систему. Мы не будем описывать его в такой строгой форме (любители строгости могут найти подобные описания в литературе к данному разделу), а попытаемся оставаться на содержательном уровне описания.

Под предикатом будем понимать некоторую связь, заданную на наборе из констант или переменных, например утверждение «? больше ?». Если семантика ? и ? не задана, то о предикате сказать особенно нечего. Пожалуй, только то, что он задает двуместное отношение, семантика которого такова, что оно является антирефлексивным (неверно, что «? больше ?»), асимметричным и транзитивным. Но при задании семантики (т.е. областей определения переменных ? и ?) о предикате можно будет сказать существенно больше. Если ? и ? – площади городов соответственно в СССР и Японии, то при задании списков городов и означивании переменных константами мы получим отношение между двумя высказываниями типа «Площадь Вологды больше площади Токио» или «Площадь Ленинграда больше площади Нары». После этого становится возможным говорить об истинности или ложности предиката. Для нашего примера первое означивание дает ложное значение предиката, а второе – истинное. Иногда для утверждения об истинности или ложности предиката можно обойтись и без означивания. Например, если областью определения х являются целые положительные числа, то предикат «х больше ?5» будет тождественно истинен.

В исчислении предикатов используются те же операции, что и в исчислении высказываний. С их помощью образуются предикатные формулы. Будем обозначать предикаты большими латинскими буквами. Примерами предикатных формул могут служить Р(х,у)&Q(a,b) или P(?) P(z,l).

В исчислении предикатов используются два квантора: квантор общности и квантор существования. Первый обозначается как , а запись xP(x) эквивалентна утверждению «Для всех х из области его определения имеет место Р(х)». Второй квантор обозначается как , а запись хР(х) эквивалентна утверждению «Найдется по крайней мере один х* в области определения х, такой, что истинен Р(х*)». Переменные, находящиеся в сфере действия кванторов, называются связанными, остальные переменные – свободными.

Вспомним И.А. Крылова: «А вы, друзья, как ни садитесь, все ж в музыканты не годитесь!». Обозначим через Р(х,у) предикат, который связывает между собой способ рассаживания участников квартета и качество исполняемой ими музыки. Предикат Р(х,у) становится истинным лишь тогда, когда найдено такое взаимное расположение зверей в квартете, что качество музыки позволяет назвать исполнителей музыкантами. При этих условиях цитате из басни «Квартет» соответствует формула x P(x,у).

А вот Ф. Тютчев: «Бывают роковые дни лютейшего телесного недуга и страшных нравственных тревог…». Если Q(u,v) есть предикат, в котором переменная u определена на множестве дней, а переменная v на области настроений, связанных с «телесным недугом» и «страшными нравственными тревогами», то в исчислении предикатов началу стихотворения Тютчева будет соответствовать формула uQ(u,v).

Отметим, что имеют место следующие соотношения:

Справедливость их вытекает из смысла кванторов. Они позволяют любую формулу в исчислении предикатов представить в виде предваренной нормальной формы (ПНФ). В ней сначала выписываются все кванторы, а затем предикатные выражения. Например, формула

записана в ПНФ.

Введение кванторов и , а также их отрицаний наводит на мысль о связи исчисления предикатов и силлогистики Аристотеля. Вспомним еще раз смысл кванторов, использованных в силлогистике: Asp – «Всякое s есть р»; Esp – «Ни одно s не есть р», Isp – «Некоторые s есть р» и Osp – «Некоторые s не есть р». Представляется вполне справедливым заменить эти выражения силлогистики следующими четырьмя формулами исчисления предикатов:

На первый взгляд такая замена вполне законна. Но для того, чтобы убедиться в этом, необходимо показать, что в исчислении предикатов могут быть выведены все модусы силлогистики Аристотеля.

Система аксиом и правила вывода в исчислении предикатов могут быть заданы следующим образом. В качестве системы аксиом берется любая известная система аксиом исчисления высказываний и к ней добавляются специфические для исчисления предикатов аксиомы, например, такие:

Смысл их очевиден. Первая аксиома говорит о том, что если Р(х) истинен для любых х, то и для некоторого у из того же универсума истинность предиката должна сохраняться. Вторая аксиома говорит о том, что если найдется такое у, что Р(у) будет истинным, то верно, что существует х, для которого Р(х) истинно.

К правилам вывода, используемым в исчислении высказываний, в исчислении предикатов добавляются еще три правила.

1. Пусть F1 и F2 – две формулы исчисления предикатов. И пусть в F1 переменная х не входит, а в F2 входит в качестве свободной переменной. Пусть, наконец, формула F1 F2 является выводимой. Тогда выводима и формула F1 xF2.

2. Если х содержится в качестве свободной переменной в F1 и не содержится в таком виде в F2 и если F1 F2 – выводимая формула, то xF1 F2 также является выводимой.

3. Если F – выводимая формула и в F есть кванторы общности и существования, то любая из связанных ими переменных может быть заменена на другую связанную переменную одновременно во всех областях действий квантора и в самом кванторе. Полученная после этого формула также является выводимой.

Использование такой системы аксиом и такого множества правил вывода позволяет в исчислении предикатов из тождественно истинных формул получать тождественно истинные.

Вернемся теперь к попытке вложения силлогистических утверждений в исчисление предикатов. Исследование выводимости 24 модусов, верных в силлогистике Аристотеля, в исчислении предикатов привело к следующему результату. Если предполагать, что все классы сущностей непусты, т.е. рассуждения не касаются мыслимых сущностей (например, драконов или русалок), то приведенная выше замена силлогистических выражений выражениями логики предикатов будет полностью справедлива. Другими словами, при непустых классах сущностей все модусы силлогистики Аристотеля выводятся в исчислении предикатов.

Иная ситуация возникает при допущении пустых классов сущностей. В исчислении предикатов предикаты с пустыми областями для аргументов ведут себя совсем не так, как такие же предикаты с непустыми областями. В этих условиях оказываются невыводимыми все модусы силлогистики, в которых вывод носит частный характер, а обе посылки носят общий характер. Например, оказываются невыводимыми модусы AAI и ЕАО первой фигуры:

Хотелось бы обратить внимание читателей на только что полученный результат моделирования. Даже в области дедуктивных рассуждений, дающих всегда достоверные результаты, характер человеческих рассуждений может быть различным. И он не обязан совпадать (как это показывает случай с силлогистикой) с теми схемами рассуждений, которые демонстрирует исчисление предикатов.

 

Общая схема вывода

Опишем общую схему выводов, лежащую в основе большого количества моделей человеческих достоверных рассуждений. Она приведена на рис. 19. Обратим сначала внимание на рис. 19, а. На нем показано некоторое дерево вывода. Вершинам этого дерева соответствуют определенные утверждения F i , а дуги определяют порядок получения новых утверждений. Те дуги, которые сходятся в зачерненные точки, образуют конъюнктивные условия вывода, а те дуги, которые между собой соединены «дужкой», образуют дизъюнктивные условия вывода. Например, получение утверждения F9 возможно двумя путями. Если доказаны утверждения F2 и F3, то F7 следует из их доказанности, F6 из доказанности F2 и F9 из доказанности F6 и F7. Другой путь доказательства F9 вытекает из априорной доказанности F3 или F4. Любого из этих фактов достаточно для вывода F8, который обеспечивает выводимость F9.

Рис. 19.

Дерево вывода с такими условиями переходов от вершины к вершине носит название И-ИЛИ дерева. В И-ИЛИ дереве ориентация дуг показывает направление вывода. Естественное разбиение вершин дерева по ярусам отражает глубину вывода (число шагов, необходимых для получения утверждений данного яруса). Первый ярус дерева образуют вершины (на рис. 19, а это вершины F1, F2, F3, F4), играющие роль аксиом или утверждений, истинность которых задается извне.

Схема вывода не обязательно описывается в виде дерева. Она может иметь вид произвольной сети, ориентированной, неориентированной или частично ориентированной. На рис. 19, б показан пример неориентированной сети. Такая сеть (наличие или отсутствие ориентации не играет здесь роли) называется И-ИЛИ сетью. Процесс вывода на И-ИЛИ сети протекает следующим образом. Пусть мы хотим доказать утверждение ?6 (на рис. 19, б этому соответствует целевая вершина). В качестве априорно доказанного задано утверждение ?1 (ему соответствует начальная вершина, которая на рис. 19, б заштрихована). Как из ?1 можно получить ?6? Если считать, что все связи допускают ориентацию в нужную сторону, то из ?1 можно получить ?3, затем ?5 и, наконец, ?6. Но этот путь нам удалось отыскать потому, что сеть, показанную на рис. 19, б, мы видим «с птичьего полета». Лабиринт поиска лежит в виде чертежа перед нами. Именно это позволяет нам не делать лишних попыток, не двигаться в ненужную сторону, а идти кратчайшим путем к цели.

Подобная ситуация приятна, но редко встречается в действительности. При решении любой задачи, даже если заранее известен ее ответ, к которому надо стремиться (для школьника эта ситуация с подглядыванием в ответ до решения задачи весьма типична), мы не видим перед собой полного лабиринта возможностей. Мы пытаемся построить этот лабиринт, видя лишь начальные «площадки лабиринта» и не зная, что лежит между ними и «целевыми площадками». В нашем примере мы стоим на начальной площадке, в вершине ?1, и не знаем, куда идти. Мы делаем попытку перейти в ?2 (т.е. вывести утверждение), но видим, что этого нельзя сделать. Тогда мы движемся в сторону утверждения ?3 и обнаруживаем, что его доказательство возможно. Теперь в нашем распоряжении две площадки лабиринта: ?1 и ?3. Из ?3 можно двигаться в четырех направлениях. Одно из них, ведущее назад к ?1, интереса не представляет. Попытка продвинуться к ?2 и ?5 оказывается успешной. Возникает новый фронт достигнутых площадок (доказанных утверждений). Теперь его образуют ?2, ?3 и ?5. Площадка ?1 исключается из активного фронта, так как использованы все связи этой площадки с другими площадками лабиринта. На следующем шаге достигаются площадки ?4 и ?6. Наличие среди доказанных выражений целевого ?6 позволяет завершить процесс доказательства. После этого можно произвести «чистку», в результате которой останется лишь тот путь, который кратчайшим образом приводит от начального утверждения ?1 к целевому ?6.

На примере мы описали процедуру, которая, как легко видеть, носит универсальный характер и пригодна для поиска пути вывода в лабиринтах произвольного типа. Эта процедура известна среди специалистов под названием метода прямой волны. Волна поиска путей к целевой площадке распространяется от всех площадок, играющих роль начальных.

Возможен и другой способ поиска доказательства. Он носит название метода обратной волны. В этом методе волна начинает свое движение от целевых площадок и движется в направлении начальных площадок лабиринта. Для нашего случая на первом шаге была бы порождена площадка, соответствующая ?5, вслед за этим ?3 и ?1. На этом движение волны прекратилось бы, так как ее фронт достиг всех (в данном случае единственной ?1) начальных площадок.

Различие между прямой и обратной волной состоит в том, что они порождают в процессе своего движения различные промежуточные «фронты» площадок, что приводит к различному числу шагов при поиске. Часто используется смешанный метод вывода, при котором одновременно движутся прямая и обратная волны. При встрече этих волн формируется путь вывода от начальных аксиом к целевым выражениям.

Несколько иной разновидностью схем вывода являются так называемые альтернативные деревья или альтернативные сети. В этих схемах выбор дальнейшего пути движения зависит от того, достигнут или не достигнут вывод некоторого выражения. Другими словами, попытки продвижения по лабиринту, которые мы демонстрировали на методе прямой волны при удачах и неудачах, могут влиять на стратегию дальнейшего движения. Такие схемы вывода мы более подробно рассмотрим в пятой главе. Здесь же лишь проиллюстрируем рассуждение такого типа на примере.

В знаменитом рассказе «Убийство на улице Морг» Эдгара По сыщик-любитель Огюст Дюпен помещает в газете объявление о находке орангутанга, который, по слухам, принадлежит матросу мальтийского корабля. На вопрос о причинах такого объявления Огюст Дюпен отвечает следующим образом:

«Но вот обрывок ленты, посмотрите, как она засалена, да и с виду напоминает те, какими матросы завязывают волосы. К тому же таким узлом мог завязать ее только моряк, скорее всего мальтиец. Я нашел эту ленту под громоотводом. Вряд ли она принадлежала одной из убитых женщин. Но даже если я ошибаюсь и хозяин ленты не мальтийский моряк, то нет большой беды в том, что я сослался на это в моём объявлении. Если я ошибся, матрос подумает, что кто-то ввел меня в заблуждение, и особенно задумываться тут не станет. Если же я прав, – это козырь в моих руках. Как очевидец, хоть и не соучастник убийства, француз, конечно, не раз подумает, прежде чем пойти по объявлению. Но вот он станет рассуждать: „Я не виновен, к тому же я человек бедный; орангутанг и вообще-то в большой цене, а для меня это целое состояние, зачем же терять его из-за пустой мнительности. Вот он, рядом, только руку протянуть. Его нашли в Булонском лесу, далеко от места, где произошло убийство. Никому в голову не придет, что такие страсти мог натворить дикий зверь. Полиции ввек не догадаться, как это случилось. Но хотя бы обезьяну и выследили – попробуй докажи, что я что-то знаю; а хоть бы и знал, я не виноват. Главное, кому-то я уже известен. В объявлении меня так и называют владельцем этой твари. Кто знает, что этому человеку еще про меня порассказали. Если я не приду за моей собственностью, а ведь она больших денег стоит, да известно, что хозяин – я, на обезьяну падет подозрение. А мне ни к чему навлекать подозрение, что на себя, что на эту бестию. Лучше уж явлюсь по объявлению, заберу орангутанга и спрячу, пока все не порастет травой“».

Читателю предлагается построить по этому тексту альтернативное дерево рассуждений владельца орангутанга.

И последнее замечание к тексту этой главы. Конечно, не надо считать дедуктивные схемы рассуждений панацеей для всех случаев. Метод, обычно приписываемый Шерлоку Холмсу, не всегда ведет к успеху.

Для многих читателей имя Шерлока Холмса навсегда связано с изяществом и неоспоримостью дедуктивного метода рассуждений. Но при внимательном чтении произведений Конан-Дойля легко обнаружить, что знаменитый сыщик пользовался не только дедуктивными рассуждениями. Шерлок Холмс никогда не забывал и об индукции.

Всякое порождение новой версии – это индуктивный шаг. Дедукцией является лишь обоснование выдвинутой версии. А выдвижение новых версий тесно связано с переходом от некоторых частных фактов к общим утверждениям относительно их, т.е. с правдоподобными рассуждениями. И настало время перейти к их обсуждению.

 

Глава четвертая. АВТОМАТИЗАЦИЯ ПРАВДОПОДОБНЫХ РАССУЖДЕНИЙ

 

От Аристотеля до Бэкона

Аристотель упоминал о двух основных процессах рассуждений: нисходящем или дедуктивном и восходящем или индуктивном. Иногда говорят, что дедукция – это рассуждение «от общего к частному», а индукция – «от частного к общему». При таком понимании этих двух процессов возникает иллюзия, что они как будто обратны друг другу и одну схему рассуждений можно получить из другой прямым обращением. Этой иллюзии поддался и Аристотель. Увлеченный красотой и стройностью воздвигнутого им здания силлогистики, он попытался втиснуть в его объемы и индуктивное рассуждение, ввести схему индуктивного силлогизма. Но здесь его подстерегала неудача. Индуктивные рассуждения никак не хотели отливаться в ту стройную форму, которая так подошла дедуктивным рассуждениям.

Попытки адептов учения Аристотеля исправить, уточнить, расширить понятие индуктивного силлогизма остались тщетными. В основе различия дедукции и индукции лежало нечто более существенное, чем думали мыслители, не желавшие выходить за рамки мира, очерченного рукой гениального Аристотеля.

Напомним еще раз основную цель, которую преследовал Аристотель, создавая силлогистику. Она должна была стать непобедимым оружием в споре. Если оппонент признавал общее положение, относящееся к классу однородных объектов или явлений (а как он мог не признать, например, столь очевидную истину, что «Все люди смертны»), и принадлежность какого-либо объекта или явления к этому классу (например, что «Сократ есть человек»), то ему ничего не оставалось сделать, как признать, что общий для всего класса признак переносится и на отдельный элемент этого класса. Возражать против такого хода рассуждений мог бы только человек, спорить с которым не имеет никакого смысла, ибо он отвергает очевидное.

Если бы аналогичная цель стояла перед спорящим, который пользуется методом индукции, то схема его рассуждений должна была быть следующей. Сначала он мог бы сообщить оппоненту несколько утверждений об отдельных представителях класса, в существование которого должны верить оба спорящих. Каждое такое утверждение должно касаться одного и того же признака, связанного с элементами этого класса (например, оппоненту надо было сообщить, что «Гомер смертен», «Фидий смертен», «Эзоп смертен», и добиться от оппонента признания правильности этих утверждений). После этого надо было прийти с противником к согласию, что все эти элементы принадлежат одному классу (в нашем примере, что Гомер, Фидий и Эзоп являются людьми). Далее нужно было совершить главный индуктивный шаг, перейти к утверждению о классе (т.е. ввести утверждение «Все люди смертны») и заставить противника принять это утверждение.

Трудность таится именно на последнем шаге спора. Примет или не примет этот шаг оппонент, зависит от степени его уверенности в правильности данного шага. Этот шаг требует не умения логически обосновывать свои действия и рассуждения, а веры в свою справедливость. Можно ли от трех конкретных утверждений о Гомере, Фидии и Эзопе перейти к общему утверждению о всех людях? Ответ на этот вопрос не снимается, если мы к названным трем великим представителям греческой культуры добавим еще кого-нибудь. Где граница, после которой индуктивный шаг станет оправданным? Ответа на этот вопрос нет и быть не может. Именно поэтому индуктивное умозаключение всегда является правдоподобным рассуждением. Его надо принимать на веру. И обсуждать можно только то, как оценить обоснованность этой веры, т.е. как оценить степень правдоподобности выведенного утверждения.

Мы получили весьма важный вывод о том, что каждое правдоподобное утверждение А должно сопровождаться некоторой оценкой правдоподобности (достоверности) Q ( A ) . Интерпретация Q(A) может быть различной. Некоторые из них, сейчас наиболее распространенные, будут обсуждены в последующих разделах этой главы.

Подчеркнем еще раз принципиальное различие между дедуктивной и индуктивной схемами рассуждений. Если посылки в дедуктивной схеме выбраны правильно, являются истинными, то получаемые с их помощью заключения не могут быть ложными. Если они нас чем-то настораживают, вызывают недоумение, то надо еще раз проверить истинность посылок. Убедившись в их правоте, ничего не остается делать, как полностью принять следующие из них выводы. Если посылки в индуктивной схеме выбраны правильно, являются истинными, то получаемые с их помощью заключения могут быть как истинными, так и ложными. Та или иная точка зрения на заключения зависит от степени субъективной уверенности в достаточности посылок для получения заключения. Именно поэтому вместо оценки истинности или ложности заключения в правдоподобных рассуждениях используется оценка правдоподобности (или истинности) Q(A).

Известный специалист по психологии восприятия Р. Грегори писал:

«В самой природе дедуктивных утверждений содержится нечто в высшей степени странное. Дедукция оперирует формальным символическим алфавитом. Мы вправе сказать, что дедукция небиологична, поскольку ее не могло быть до появления формального языка. В связи с этим чрезвычайно заманчива мысль об индуктивной природе процесса решения проблем, который сопровождает работу воспринимающего мозга, и о переходе к дедукции в работе мозга, занятого абстрактным мышлением, передачей сообщений, выполнением расчетов. Если это верно, то дедукция окажется свойственной только мозгу человека, поскольку лишь человек обладает формальной речью. Но это можно отнести также к электронным вычислительным машинам, работа которых подчинена правилам некоторого формального языка. …По-видимому, можно утверждать, что – поскольку в отличие от владения формальной речью восприятие не является исключительной привилегией человека – перцептивные процессы в своей сущности не дедуктивны. Остается принять, что они индуктивны ».

Таким образом, индукция тесно связана с восприятием, опытом. Когда в развитии научного мировоззрения возник этап понимания, что опытные данные, эксперимент, реальная деятельность по достижении определенных целей служат единственным мерилом обоснования научных построений, тогда наступила пора индукции.

Понимание роли индуктивных рассуждений в научном познании связано с именем двух людей, носивших одинаковую фамилию. Один из них, Роджер Бэкон, был францисканским монахом и выдающимся мыслителем. С целью прославления церкви и воплощения своей мечты о том, что католическая церковь должна царить над всем миром, этот монах в 1265 году посвятил папе Клименту IV свою работу, где сделал набросок новой экспериментальной науки, которая должна была дать в руки человечества инструмент к познанию природы и роли высшего разума в ее существовании. Только через опыт возможно постижение истины – к такому выводу пришел Роджер Бэкон. И, критикуя метод Аристотеля, он писал: «Было бы лучше сжечь сочинения Аристотеля и начать все сызнова, нежели принимать его заключения без проверки».

Но францисканец поспешил. В XIII веке схоластическая наука еще не собиралась сдавать свои позиции. Аристотель считался вершиной научной мысли. И надо было дожидаться XVII века, когда человек, обладавший большой политической властью и непревзойденным красноречием, лорд Веруламский Фрэнсис Бэкон опубликует свой труд под красноречивым и недвусмысленным названием Novum Organum. В этой работе философ обратил внимание ученых на важность экспериментального метода в науке. Мысль о том, что всякое научное положение, полученное в теории, должно подтверждаться практикой, сформулирована им четко и исчерпывающе. Фрэнсису Бэкону повезло куда больше, чем его однофамильцу. Он высказал свои мысли в нужное время, когда экспериментальная наука начала победное шествие по миру. И за это он стал признанным отцом нового направления в научном познании.

Но если внимательно разобраться в сочинениях Фрэнсиса Бэкона, то в них вряд ли удастся обнаружить пропагандируемый им метод индуктивного развития науки. Ничего подобного силлогистике Аристотеля у него нет. А поэтому вплоть до середины XIX века в области индуктивных рассуждений ничего не менялось. Их теории просто не существовало.

 

Индукция Джона Стюарта Милля

В процессе наблюдения за окружающим миром мы решаем две главные задачи, связанные с созданием модели, его описывающей. Прежде всего мы выделяем в наблюдаемом некоторые сущности. В логике им соответствуют некоторые понятия. А кроме того, мы устанавливаем между этими понятиями определенные отношения. Эти отношения могут быть как наблюдаемыми непосредственно с помощью наших органов чувств (например, отношения типа «субъект-действие» или «быть раньше»), так и достраиваемыми на основании некоторой «логики знаний» (например, отношения типа «причина – следствие» или «цель – средство»).

Среди всех этих отношений едва ли не главнейшую роль для познания окружающего мира играют каузальные отношения, отражающие в наиболее общей форме связи причин и следствий. Подробный разговор о каузальных связях мы отложим до конца этой главы. А пока поговорим лишь о том их виде, внимание к которому привлекли исследования английского логика середины XIX века Джона Стюарта Милля. Он поставил перед собой задачу нахождения связей между фактами и явлениями на основе анализа их совместного появления или непоявления в последовательности экспериментов. При этом он принял меры к тому, чтобы не повторять знаменитой ошибки при установлении причинно-следственных связей, которая вошла в историю науки под названием Post hoc ergo propter hoc, т.е. «После этого, значит вследствие этого». А ошибки такого типа не только встречались и встречаются в бытовых человеческих рассуждениях до сих пор, но иногда подобные выводы делаются сознательно, например, для создания неожиданных поэтических образов. Вот как превосходно использовал этот прием В. Луговской: «Речные девки в речках мочут косы, и над Русью от этого подъемлется туман».

Принципы установления причинно-следственных отношений, которые предложил Милль, основываются на идеях выделения сходства и различия в наблюдаемых ситуациях внешнего мира.

Способность улавливать сходство и выделять различия – фундаментальная способность, по-видимому, всех живых существ. Опираясь на эту способность, Милль сформулировал свои принципы индукции.

Первым из них является Принцип единственного различия. В формулировке, которая дана в известном учебнике логики В. Минто, он звучит следующим образом: «Если после введения какого-либо фактора появляется, или после удаления его исчезает, известное явление, причем мы не вводим и не удаляем никакого другого обстоятельства, которое могло бы иметь в данном случае влияние, и не производим никакого изменения среди первоначальных условий явления, то указанный фактор и составляет причину явления».

Схематически этот принцип можно описать в виде следующей схемы:

Здесь знак трактуется лишь как появление d при наличии а, b и c, а означает, что d не появляется. Повторение ситуаций n раз необходимо для того, чтобы убедиться в устойчивости всей ситуации в целом, для исключения случая, когда d появляется случайным образом, не будучи никак связанным с а. Если n, с точки зрения экспериментатора, достаточно для уверенного вывода, то, используя Принцип единственного различия, можно утверждать, что а является причиной, a d следствием, т.е. что между a и d имеет место причинно-следственное отношение. В дальнейшем будем называть реализации a,b,c d положительными примерами для d, а реализации b,c d – отрицательными примерами для d или контрпримерами.

Второй основополагающий принцип индуктивного рассуждения Милля носит название Принципа единственного сходства. В формулировке того же В. Минто он звучит следующим образом: «Если все обстоятельства явления, кроме одного, могут отсутствовать, не уничтожая этим явления, то это одно обстоятельство находится в отношении причинной связи с явлением при условии, что приняты были все меры к тому, чтобы никаких других обстоятельств, кроме принятых во внимание, налицо не оказалось».

Схематическое представление этого принципа Милля выглядит следующим образом:

В этой схеме все примеры являются положительными. Из нее по Принципу единственного сходства вытекает, что a и d связаны причинно-следственным отношением.

Еще один принцип Милля – Принцип единственного остатка. Он формулируется В. Минто следующим образом: «Если вычесть из какого-либо явления ту часть его, которая согласно прежним исследованиям оказывается следствием известных причин, присутствующих в явлении причин, то остаток явления есть следствие остальных причин».

Принцип единственного остатка можно проиллюстрировать следующей схемой:

Следовательно, a и d связаны причинно-следственным отношением, а b и с являются возможными причинами е. Для дальнейшего уточнения зависимости надо посмотреть, приводит ли исключение b к появлению e. Если приводит, то отношением «причина – следствие» связаны между собой с и е. В противном случае это отношение имеется между b и е.

Отметим ряд особенностей схем Милля. Прежде всего, они справедливы лишь при условии, что в описании ситуации имеется полное множество наблюдаемых фактов или явлений. Например, в последнем случае может оказаться, что и исключение b, и исключение с не влияют на появление е. Тогда можно предположить, что для появления е необходимо либо одновременное наличие b и с, либо е вызывается чем-то, не вошедшим в описание ситуации.

Другими словами, появление некоторого элемента ситуации может определяться не отдельными факторами или элементами, а их совокупностью, задаваемой с помощью сложного логического выражения. В левой части причинно-следственного отношения может стоять сложное выражение, в котором отдельные элементы могут быть связаны между собой конъюнктивными и (или) дизъюнктивными связками.

Проиллюстрируем это на следующих примерах. В качестве первого примера рассмотрим ситуации, показанные на рис. 20. С ними связана следующая история. Когда некий человек встречает на улице необычных зверюшек, то, глядя на них, он или радуется, или печалится. Нас интересует, какие качества зверюшек приводят человека в хорошее расположение духа. Другими словами, что является причиной его улыбки. Для удобства ответа на этот вопрос на рис. 20 положительные примеры и контрпримеры разделены штриховой чертой.

Рис. 20.

Как видно из рисунка, зверюшки обладают тремя признаками: формой спины, числом ног и формой ног. Что же вызывает улыбку? Используем метод Милля. Возьмем в качестве первой возможной причины форму спины у зверюшки. Положительные примеры таковы, что во всех наблюдаемых случаях эта форма выгнута вниз. Обозначим этот признак через a, а реакцию человека, когда он радуется, через d. Можно ли утверждать, что а есть причина d? Согласно Принципу единственного сходства наличие спины такой формы должно всегда вызывать улыбку. Но первый же контрпример опровергает это. Число ног (обозначим этот признак как b) также не может быть причиной улыбки. В положительных примерах b везде равно двум, и можно подумать, что именно две ноги зверюшки веселят человека. Но в трех контрпримерах ног тоже две. С формой ног (этот признак обозначим как с) ситуация в положительных примерах такова, что сразу ясно, что с не может быть причиной d.

Таким образом, ни один из признаков зверюшки по отдельности не может быть причиной улыбки человека. Попробуем выделить общее ядро сходства у всех зверюшек в положительных примерах. Такое ядро есть. Все зверюшки в этих примерах имеют выгнутую вниз спину и две ноги. Другими словами, для них всегда истинно утверждение Р1(а)&Р2(b), в котором Р1(а) – предикат, интерпретируемый как «форма спины, выгнутая вниз», а Р2(b) – предикат, интерпретируемый как «число ног равно двум». Проверим, будет ли истинным выделенное ядро в отрицательных примерах. Простой проверкой убеждаемся, что оно везде ложно. Таким образом, причина улыбки человека найдена. Она возникает тогда и только тогда, когда встреченная им зверюшка имеет выгнутую вниз спину и две ноги.

Приведенный пример показывает, что при использовании методов индуктивных рассуждений, которые предложил Милль, весьма важную роль играет способ выделения признаков или фактов, с помощью которых описываются ситуации.

Еще один пример связан с ситуациями, показанными на рис. 21. Теперь нас беспокоит реакция зверюшки на тех людей, которых она встречает на улице. У зверюшки хорошее настроение, когда она встречает людей с выражением на лице, как в положительных примерах. И ее настроение становится плохим, когда ей встречаются люди с такими лицами, как на отрицательных примерах. Возникает вопрос о причине появления у зверюшки хорошего настроения при встрече с людьми. Три элемента лица: рот, нос и глаза, полностью характеризуют выражение человеческого лица. Будем обозначать эти признаки как е, ? и g, а реакцию зверюшки как h. Поскольку все признаки принимают только два значения, как и реакция зверюшки, то можно (это можно было сделать и в предыдущем примере, но было желание продемонстрировать общий подход, использующий запись в виде предикатных формул) обойтись формулами исчисления высказываний. Будем считать, что е, ? и g истинны, если они соответствуют типу рта, носа и глаз человека из первого положительного примера. Будем также считать истинным значение h, соответствующее зверюшке с хорошим настроением. Если выделить ядро сходства у положительных примеров, то оно окажется пустым. Это свидетельствует о том, что причиной хорошего настроения зверюшки не может быть просто конъюнкция каких-то признаков человеческого лица. Выражение причины через признаки должно использовать дизъюнкцию.

Рис. 21.

В этом случае надо попытаться найти частные ядра сходства и попробовать объединить их в причину через операцию дизъюнкции. Выделим все попарные общие признаки у лиц, входящих в положительные примеры. Первое и второе лицо имеют общую часть е, первое и третье – ?, а второе и третье – . Проверяем, какое из полученных выражений является ложным на всех контрпримерах. Таковым оказывается лишь е. Значит, е должно войти в выражение для причины хорошего настроения зверюшки. Но только два первых положительных примера характеризуются истинным е. Третий положительный пример портит все дело.

Для того чтобы учесть третий пример, надо построить общее ядро различия для него и лиц, входящих в отрицательные примеры. Сразу видно, что форма рта тут не поможет. Остаются нос и глаза. Нос и глаза такой формы, как в третьем положительном примере, можно по отдельности найти в отрицательных примерах. Но их комбинация, характерная для третьего положительного примера (при принятых нами обозначениях эта комбинация описывается формулой ?& g), нигде не встречается в отрицательных примерах. Это позволяет, наконец, написать выражение для причины h в следующей форме: h=(e (?& g)). Словесно эта причинно-следственная связь может быть описана следующим образом: зверюшка находится в хорошем настроении, если она встречает человека, рот у которого печален (концы губ опущены вниз) или глаза у него закрыты, а нос тонкий и прямой.

Попробуем теперь найти причину, когда зверюшка бывает в плохом настроении. Обратимся для этого к отрицательным примерам и попробуем на них выделить общее ядро сходства. Оно легко обнаруживается. Это е. Но, к сожалению, в качестве причины плохого настроения зверюшки его использовать нельзя. Все тот же третий положительный пример препятствует этому. Значит, и для причины плохого настроения зверюшки надо искать дизъюнктивное выражение. Найдем частные попарные ядра сходства. Для первого и второго отрицательных примеров это ядро есть e&g, для первого и третьего – е, а для второго и третьего – e& ?. Второе частное ядро сходства совпадает с общим ядром сходства и поэтому интереса не представляет. Два других частных ядра сходства на всех лицах положительных примеров оказываются ложными. Это позволяет записать выражение для причины плохого настроения зверюшки в следующей форме: h’=(( e&g) ( e& ?). Учитывая справедливость дистрибутивных законов для конъюнкции относительно дизъюнкции и наоборот (читатели могут проверить этот факт, так как им известно, как проверять в исчислении высказываний равенство ?1=?2), можно записать выражение для причины плохого настроения зверюшки в более коротком виде: h’=( e&(g ?)). Словесно эта причина может быть сформулирована следующим образом: если рот человека улыбается и глаза широко открыты или нос его по форме напоминает картошку, то зверюшка впадает в плохое настроение.

Если составить таблицу, в которой перечислены все комбинации истины и лжи для е, ? и g, и определить истинность h и h’, то можно убедиться, что h’= h. Другими словами, если h истинно, то зверюшка находится в хорошем настроении, а если h ложно, то в плохом. Это означает, что вместо двух выражений для h и h’ можно пользоваться только одним из них.

Такая ситуация не является стопроцентной. На рис. 22 мы снова встречаемся с известной нам зверюшкой. Но здесь выражения для h и h’, легко вычисляемые с помощью общих ядер сходства, имеют вид h=e& g и h’=g& e. Другими словами, зверюшка в хорошем настроении, когда встречает человека с печальным ртом, и она печалится, когда видит человека с широко открытыми глазами. В этом случае h и h’ никак не связаны между собой.

Чем различаются два рассмотренных случая? Пусть на пути нашей зверюшки встретился человек с лицом, обведённым на рис. 21 и 22 в рамочку. Как среагирует на него зверюшка? В случае, показанном на рис. 21, она тут же перейдет в хорошее настроение, ибо h истинно, а h’, естественно, ложно. Но в случае, соответствующем рис. 22, ситуация для зверюшки становится весьма сложной. Для встретившегося ей персонажа h и h’ одновременно ложны. Возникает конфликт. Новый персонаж не укладывается в ту классификацию, которая была построена по положительным и отрицательным примерам. Конфликт для зверюшки неразрешим.

Рис. 22.

Его можно разрешить лишь волевым усилием. Надо включить новый персонаж в число либо положительных, либо отрицательных примеров. В реалии разбиение чего-либо на классы (в наших случаях на два класса) вытекает из каких-то прагматических требований. Например, все люди, отнесенные к положительным примерам, относятся к зверюшке доброжелательно. Их не нужно опасаться. А люди, относимые к группе отрицательных примеров, таковы, что лучше обойти их стороной. От них ждать добра не приходится. Тогда волевое отнесение нового персонажа к той или иной категории должно получить практическое подтверждение своей правильности или неправильности. Если встреча с ним для зверюшки окажется благоприятной, то его, конечно, надо относить к положительным примерам. В противном случае его место среди отрицательных примеров.

Мы продемонстрировали весьма важное положение, связанное с процессом индуктивного обобщения. Если h и h’ классифицируют множества положительных и отрицательных примеров, так что h= h’, то появление новых примеров не ставит систему в тупик. Она всегда куда-то отнесет новый случай, т. е, при выполнении указанного равенства система обладает полнотой классификации. Конечно, может оказаться, что эта классификация не является правильной. Ведь она построена по неполному множеству представителей положительного и отрицательного классов.

Пусть, например, мы снова имеем классификацию, которая соответствует ситуациям, показанным на рис. 21. Но контрольный пример поступает в систему с указанием, что он относится к группе отрицательных примеров. А система в соответствии с ранее построенной классификацией относит его к положительному классу. В таком случае необходимо внести коррективы в классификацию, полученную ранее, выработать новую классификацию с учетом нового множества отрицательных примеров.

Вывод из этого только один. Поскольку множества положительных и отрицательных примеров не охватывают всех возможных случаев, то h и h’, построенные по методам Милля, даже в тех случаях, когда h= h’ не могут быть абсолютно точными. Эти утверждения могут быть приняты лишь с некоторой оценкой истинности Q(h) (соответственно Q(h’)). Но прежде чем описать, как эти оценки вычисляются, рассмотрим еще один метод правдоподобных рассуждений.

 

Рассуждения по аналогии

Начнем с задачи. Посмотрим на первую строку, показанную на рис. 23. В этой строке представлено преобразование F, с помощью которого пара слов, стоящая слева от стрелки, преобразуется в слово, стоящее от нее справа. Можно ли угадать, во что превратится пара слов, стоящих во второй строке на этом рисунке, если считать, что преобразование F’ максимально похоже на преобразование F? Для ответа на этот вопрос надо сначала понять, какова суть F. После недолгого размышления можно прийти к выводу, что слово, получаемое в результате преобразования, устроено следующим образом: первая его половина совпадает с первой половиной первого слова в исходной паре, а вторая его половина получается из первой половины второго слова в исходной паре, если в ней сделать перестановку букв. Если мы верим, что F именно таково (еще раз обратим внимание на этот постулат веры), то можно попытаться придать F’ тот же смысл. Тогда вместо знака вопроса в правой части второй строки можно написать результат преобразования. Им будет слово «плен». Если считать, что F’’ – преобразование, аналогичное F и F’, то вполне законным будет получение правой части по паре левых и в третьей строке на этом рисунке.

Рис. 23.

Какой смысл мы вложили в слово «аналогичное», когда говорили о преобразованиях? По крайней мере, двоякий. Во-первых, мы предположили, что элементы, из которых состоят слова и рисунки, как-то соответствуют друг другу. Например, елочки и фигурки из третьей строки ассоциируются у нас с буквами, из которых состоят слова, а буквы важны не сами по себе, а по тому месту, которое они занимают в словах. Во-вторых, мы предполагаем, что сохраняется суть преобразования, хотя элементы, с которыми преобразование оперирует, могут быть другими.

Эти соображения помогают уловить расплывчатый смысл, вкладываемый людьми в понятие аналогии. На рис. 24 показано три преобразования для треугольника Т. Преобразование можно назвать обобщением. При переходе от треугольника к многоугольнику наследуются только те геометрические свойства, которые верны для любых многоугольников. Сам треугольник по отношению к множеству многоугольников представляет некоторую конкретизацию. На рис. 24 преобразованием конкретизации служит , переводящее произвольный треугольник в его частный вид – прямоугольный треугольник. А вот преобразование можно назвать преобразованием по аналогии. Треугольная пирамида сохраняет многие свойства треугольника, но является не плоской, а объемной фигурой.

Рис. 24.

Первая попытка формализовать понятие рассуждения по аналогии была предпринята Лейбницем. В своем сочинении «Фрагменты логики» он ввел понятие пропорции для отношения аналогии. Пропорция Лейбница формулируется следующим образом: «Вещь А так относится к вещи В, как вещь А’ к вещи В’». Обычно пропорцию Лейбница представляют в виде диаграммы:

Для иллюстрации того, как может быть использована диаграмма Лейбница, рассмотрим семантическое пространство Осгуда. Это пространство, которое американский психолог Чарльз Осгуд строил экспериментально, проводя опыты с людьми, должно было, по его мнению, характеризовать организацию размещения информации в памяти человека. Мы не будем здесь останавливаться на способе его построения. В комментарии к данному разделу имеется некоторая информация по этому вопросу, а в библиографии заинтересовавшиеся читатели могут найти нужные работы. Скажем только, что упрощенное пространство Осгуда является обычным трехмерным евклидовым пространством. Близость по метрике этого пространства характеризует семантическую близость понятий, фактов и утверждений, а рассуждения, проведенные в пространстве относительно группы элементов, могут проецироваться по аналогии на группы, состоящие из семантически близких элементов.

Проиллюстрируем эту мысль, взяв «кусок» пространства Осгуда, относящийся к понятиям, используемым для указания родства. То, что они в семантическом пространстве расположены компактно, было доказано экспериментально. Этот «кусок» пространства Осгуда показан на рис. 25. Для удобства введена система координат и сделано такое преобразование, чтобы все точки, соответствующие интересующим нас понятиям, оказались лежащими в вершинах единичного куба (правомочность такого преобразования в пространстве Осгуда мы тут не обсуждаем).

Рис. 25.

Пусть даны три элемента пропорции Лейбница А, А’ и В. И необходимо узнать элемент В’. Для рассматриваемого примера примем следующий способ нахождения координат понятия В’: b’ i =b i +а’ i –а i где i=1,2,3. Пусть, например, нас интересует пропорция Сын:Дочь=Дядя:? Для определения неизвестного члена пропорции произведем необходимые вычисления, используя координаты понятий, отмеченные на рис. 25. Получим b’1=0+1–0=1; b’2=1+0–0=1; b’3=0+1–0=1. Таким образом, понятие В’ имеет координаты (1,1,1). Этим координатам соответствует понятие «Тетя».

Для дальнейшего необходимо уточнить понятия «похожесть» и «аналогия», использованные в диаграмме для пропорции Лейбница, и придать им по возможности строгий смысл. Сделать это можно следующим образом. Выберем некоторый алгебраический язык для описания A и В, который обозначим 1 и некоторый (вообще говоря, другой) алгебраический язык для описания А’ и В’, который обозначим 2. Переход от A к В и от A’ к B’ будем интерпретировать как преобразование соответствующих описаний в языках 1 и 2. Поскольку выбранные языки являются алгебраическими, то в них выделены элементы и операции, определённые над этими элементами. Учитывая дальнейший пример, будем считать, что в качестве элементов языков 1 и 2 выступают некоторые изображения или их совокупности, связанные отношениями из заданного набора двуместных отношений. А операции состоят в том, что над элементами можно совершать различные геометрические преобразования, определяемые их движениями. Это приводит к изменению отношений между элементами, входящими в анализируемые совокупности.

Чтобы все сказанное стало понятнее, рассмотрим конкретный пример. На рис. 26 показана серия изображений, соответствующая пропорции Лейбница, в которой, как всегда, надо восстановить недостающее звено, т.е. осуществить (если это возможно) вывод по аналогии. Для описания изображений введем языки 1 и 2. В языке 1 в качестве элементов возьмем изображение солнца s, и человечка m. В качестве отношений будем рассматривать отношения R1 – «быть слева вверху» и R2 – «быть справа вверху». Тогда ситуация А может быть описана как sR1m. В качестве операций в 1 будем использовать перестановку объектов относительно друг друга O1 и вращение на 180° по часовой стрелке O2. Тогда преобразование F можно описать как O1(s,m); O2(m). В результате этого возникает ситуация B, описание которой в языке 1 выглядит как sR2(O2(m)).

Рис. 26.

Введем теперь элементы языка 2. Это луна l и фантастическое животное q. В качестве отношений, используемых в 2, возьмем снова отношения R1 и R2, а в качестве операций 2 сохраним операции O1 и O2 языка 1. Описание А’ выглядит следующим образом: lR1q. Для получения описания В’ установим между А и А’ отношение взаимно однозначного соответствия H, например, так, что имеют место взаимно однозначные соответствия s l и m q. Тогда sR1m lR1q и А А’. Преобразование F’ в наших предположениях совпадает с F. Значит, В и В’ должны находиться также во взаимно однозначном соответствии. Но В есть sR2(O2(m)). Учитывая соответствие между элементами 1 и 2, выводим описание для В’:lR2(O2(q)).

Рассмотренная процедура носит общий характер. Можно строго доказать, что если в пропорции Лейбница А, А’ и В описаны с помощью алгебраического языка, использующего лишь двуместные отношения, задан характер преобразований F и установлено взаимно однозначное соответствие между 1 и 2, то описание В’ также возможно на языке 2 и существуют взаимно однозначные соответствия F F’ и В В’, так что, применяя к А преобразование F и к А’ преобразование F’, получаем В и В’, такие, что В В’.

Заметим, что из этого утверждения вытекает, что необходимым условием для возможности рассуждений по аналогии с использованием пропорции Лейбница служит требование коммутативности ее диаграммы. Требование коммутативности диаграммы означает, что описание В’, полученное из A с помощью F и взаимно однозначного соответствия H’, ничем не отличается от описания В’, полученного из A с помощью взаимно однозначного соответствия H и последующего применения к этому результату преобразования F’. С требованием коммутативности диаграмм мы еще столкнемся в последующих разделах этой главы.

Несмотря на все сказанное, полное описание модели рассуждений по аналогии всё еще не получено, так как пропорция Лейбница явно не исчерпывает всех случаев рассуждений подобного типа. Да и в случае, когда мы имеем дело действительно с пропорцией Лейбница, остаются нерешенными по крайней мере два вопроса: как построить языки 1 и 2 и как установить взаимно однозначное соответствие между ними. Возможные в этом случае трудности иллюстрирует рис. 27. На этом рисунке показаны ситуации А и А’. Ситуация А может быть описана следующим текстом: «Ромео любит Джульетту. Джульетта любит Ромео (на рис. 27 это отношение R1). Ромео мужчина (R2). Он итальянец (R3). Джульетта женщина (R4). Она красива (R5). Она не замужем (R6)». Ситуация А’ может быть описана следующим текстом: «Тристан любит Изольду. Изольда любит Тристана (R1). Тристан мужчина (R2). Он бретонец (R*2). Изольда женщина (R4). Она красива (R5). Она замужем (R*6). Ее муж – король Марк (R7)».

Рис. 27.

Готовы ли мы признать описанные две ситуации аналогичными? И должен ли Тристан действовать так же, как Ромео? Из соответствующих литературных произведений мы знаем, что развитие ситуации А было таково, что оно привело к совместной смерти Ромео и Джульетты. А Тристан и Изольда имели другую судьбу. Почему это произошло? И можно было бы это формально установить в процессе сравнения ситуаций А и А’? Ведь во второй ситуации имелся король Марк, а различное число отношений заведомо не позволяло установить взаимно однозначное отношение между их описаниями. Но может быть вместо изоморфизма (т.е. взаимно однозначного отношения) для 1 и 2 достаточно какого-нибудь гомоморфизма?

Этот вопрос пока остается без ответа. Поэтому ограничимся лишь тем, что для рассуждений по аналогии можно считать твердо установленным. В следующем разделе попытаемся объединить то, что нам уже известно об индуктивном методе Милля и рассуждениях по аналогии.

 

ДСМ-метод

Сокращение ДСМ, вынесенное в название метода, означает Джон Стюарт Милль. Оно показывает, что метод поиска закономерностей по множествам положительных и отрицательных примеров, к описанию которого мы переходим, опирается на методы индукции, предложенные этим ученым. Их реализация в виде комплекса действующих программ на ЭВМ выполнена современными исследователями.

Введем три множества: причин А={а1,а2,…,а p }, следствий B={b1,b2,…,bm } и оценок Q={q1,q2,…,q l }. Выражение вида а i b j ; q k будем называть положительной гипотезой. Оно связано с утверждением типа «а i является причиной b j , с оценкой достоверности q k ». Выражение вида а i b j ;q k будем называть отрицательной гипотезой. Оно связано с утверждением типа «а i не является причиной b j , с оценкой достоверности q k ». Для сокращения записи положительные гипотезы будем обозначать h i +j k , а отрицательные – hi -j k . Среди значений qi выделим два специальных, которые можно обозначить 0 и 1. Значение 0, приписанное положительной или отрицательной гипотезе, означает, что соответствующее утверждение является ложным. Приписывание гипотезам значения 1 означает, что данная гипотеза является тождественно истинной. Таким образом, гипотезы с оценками 0 и 1 можно рассматривать как высказывания, ложность и истинность которых твердо установлены. Все остальные оценки, отличные от 0 и 1, будем обозначать рациональными числами вида s/n, где s пробегает значения от 1 до n–1. Величина n характеризует «дробность» используемых оценок достоверности. Чем больше n, тем с большей точностью оценивается степень достоверности гипотез.

Пусть мы вдруг оказались в стране, где до этого нам не приходилось бывать. Выйдя из гостиницы, мы увидели, что у подъезда стоит такси, выкрашенное в ярко-желтый цвет. Через некоторое время рядом останавливается еще одно такси такого же цвета. В нашей голове возникает положительная гипотеза вида «В этой стране, если автомобиль выполняет роль такси, то цвет его будет желтым». Оценка достоверности этой гипотезы при двух наблюдениях будет невелика. Но если во время прогулки по улицам города мы увидим, что такси окрашены в тот же желтый цвет, то оценка выдвинутой при выходе из гостиницы гипотезы будет все время возрастать. Станет ли она когда-нибудь равной единице? Если после недельного пребывания в стране наша гипотеза будет подтверждаться лишь положительными примерами, то на родине, рассказывая знакомым и друзьям о своих впечатлениях, связанных с поездкой, мы вполне можем заявить: «А такси у них покрашены в ярко-желтый цвет, что очень удобно – сразу можно найти его, когда нужно». Значит ли это, что гипотеза о цвете такси приобрела оценку достоверности, равную 1?

Можно ввести два типа истинности: эмпирическую истину и теоретическую истину. В нашем примере высказыванию о цвете такси мы, конечно, приписываем эмпирическую истину. Просто все наши наблюдения были в пользу данной гипотезы. Но мы вполне можем допустить, что есть небольшое количество такси иного цвета. Они ни разу не попадались нам на глаза. Совсем другое положение будет в том случае, когда в путеводителе, обнаруженном в гостинице, будет сказано, что закон данной страны запрещает окрашивать такси в какие-либо другие цвета, кроме желтого. При такой информации высказывание о желтом цвете такси будет оценено как теоретическая истина.

На этом простом примере видна разница между дедуктивным и индуктивным умозаключением. При использовании информации из путеводителя о цвете такси вы уже не нуждаетесь в эксперименте. Полученное знание носит общий характер. В каждом конкретном случае (например, при поиске такси) его можно механически применять, фиксируя цвета проходящих машин. Никакого нового знания при решении конкретных задач, связанного с цветом такси, получить нельзя. При получении же информации из наблюдений формируется новое знание, которого раньше не было. Гипотеза о цвете такси в данной стране – это новая информация. Таким образом, индуктивное рассуждение способно порождать новые знания. В этом смысле оно куда более «интеллектуально», чем дедуктивное рассуждение.

Достижение эмпирической истины (а только такая истина и возможна при индуктивных рассуждениях) вполне возможно. Для этого достаточно некоторого множества положительных примеров при полном отсутствии отрицательных примеров, опровергающих выдвинутую гипотезу. А число необходимых положительных примеров, необходимых для того, чтобы считать гипотезу эмпирически истинной, может быть разным в различных обстоятельствах и у разных людей. Недаром же все представители рода человеческого делятся на тех, кто готов верить в нечто всего по одному примеру, и тех, кто подобно евангельскому Фоме никогда не может уверовать до конца даже в самые очевидные для остальных истины.

Рассмотренный пример иллюстрирует процесс оценивания степени достоверности гипотезы, когда предполагаемая причина (в нашем случае – принадлежность автомашины к множеству такси) уже выделена из множества возможных причин. В ДСМ-методе формализован не только этот этап, но и предшествующий ему этап нахождения кандидата в причины, которая могла бы вызвать интересующее нас следствие. В примере это соответствовало бы следующему. Наблюдая на улицах города потоки автотранспорта и выделяя среди автомашин ярко-желтые, надо «сообразить», что желтыми являются только такси.

Причины могут быть различными по типу. Наиболее редкими являются необходимые и достаточные причины. Если аi – причина такого типа, то bj происходит всегда, и если bj произошло, то наверняка было аi . Примерами такой «жесткой» связи двух явлений может служить падение тела, если для него отсутствует опора. Чаще встречаются достаточные причины, всегда вызывающие появление bj . Но появление bj не служит стопроцентным обоснованием того, что до этого было аi . Следствие bj могло быть вызвано и какими-то другими достаточными причинами. Если, например, ваш друг не пришел в условленное место и в условленное время на свидание, то, возможно, он заболел, ибо болезнь – достаточная причина для отказа от свидания, но весьма вероятно, что были какие-то другие причины нарушения им своего обещания.

Дополнительные причины обладают тем свойством, что их наличие не вызывает следствия bj . Для того чтобы bj появилось, нужен вполне определенный набор дополнительных причин, который выступает в роли обобщенной достаточной причины появления bj . Легко себе представить такой набор причин, который приводит к попаданию мяча в сетку ворот при игре в футбол. Перечисление и обсуждение дополнительных причин, приведших к голу, – знакомое занятие для каждого истинного любителя футбола. Среди дополнительных причин могут быть необходимые дополнительные причины. Их вхождение в набор, образующий обобщенную достаточную причину, обязательно для того, чтобы bj реализовалось. Остальные дополнительные причины можно назвать факультативными. В окончательный набор могут входить те или иные комбинации факультативных причин. Так, в ситуации забивания гола две дополнительные причины являются заведомо необходимыми: удар, посылающий мяч в ворота, и ошибка вратаря. Остальные дополнительные причины являются факультативными. Наконец, возможные причины аi обладают тем свойством, что появление аi необязательно вызывает bj , но увеличивает возможность появления bj .

Кроме причин аi важную роль в процессах реализации причинно-следственных зависимостей играют так называемые тормоза. Наличие тормоза наряду с причиной, вызывающей bj в обычных условиях, приводит к тому, что bj не появляется. Так, принятие смертельной дозы яда не приводит к ожидаемому исходу, если до этого было принято противоядие.

Вернемся к ДСМ-методу. После сказанного становится ясным, что нахождение причин – кандидатов для формируемых гипотез – дело далеко не простое. В положительных и отрицательных примерах эти причины скрыты в описаниях реальных объектов, обладающих или не обладающих интересующими нас свойствами. Из этих описаний надо выделить кандидатов в причины, а затем убедиться, что выбор оказался не случайным. При первом реальном использовании ДСМ-метода одной из конкретных задач была задача нахождения причин того, что некоторое органическое химическое соединение будет обладать свойством биологической активности. Постулировалась, что информация о причинах биологической активности скрыта в структурной формуле того или иного соединения. Какие-то особенности этих формул оказывали влияние на интересующее исследователей свойство. Экспериментально для многих соединений было установлено наличие или отсутствие в них биологической активности. Эти экспериментальные факты составляли множество положительных и отрицательных примеров. На основании их программы, реализующие ДСМ-метод, должны были найти новые, не известные химикам и фармакологам закономерности, позволяющие без экспериментальной проверки (весьма дорогой и длительной) оценивать возможность того, что вновь синтезированное вещество будет обладать биологической активностью.

Суть того, как это делалось с помощью ДСМ-метода, состоит в следующем. Рассмотрим группу положительных примеров. Находим некоторую часть описания объектов, общую для определенной совокупности примеров из этой группы. Например, обнаруживаем в значительной части структурных формул соединений, обладающих свойством биологической активности, кольцевую структуру с фиксированным заполнением позиций в этой структуре. Тогда есть основания считать ее кандидатом в причины. Таких кандидатов может оказаться несколько. Образуем матрицу М+, в которой строки соответствуют выделенным кандидатам аi , а столбцы – интересующим нас следствиям bj (при одном интересующем нас следствии в М+будет один столбец). На пересечении строк и столбцов будем записывать оценки достоверности qk гипотез hi +j k . Об их нахождении будет сказано ниже. Для множества отрицательных примеров аналогичным образом строится другая матрица М–, в которой содержатся оценки достоверности отрицательных гипотез h i –jk . Кандидаты в причины в матрицах М+и М?могут частично совпадать, так как положительные и отрицательные примеры не образуют полной выборки из всего множества возможных примеров.

На каждом шаге работы ДСМ-метода используются новые наблюдения, пополняющие множества положительных и отрицательных примеров. Эти новые наблюдения могут либо подтверждать сформированные гипотезы hi +j k и h i –jk либо противоречить им. В первом случае надо увеличивать оценки достоверности соответствующих гипотез, а во втором – уменьшать их. Механизм изменения оценок qk может быть различным. В ДСМ-методе он устроен следующим образом. Значение n совпадает с числом имеющихся в данный момент положительных или отрицательных примеров. Таким образом, для М+и М–значение n может оказаться различным. С ростом n растет «дробность» оценок достоверности. Оценка 1/n играет особую роль. Она соответствует полному незнанию о достоверности гипотезы. Поэтому в начальный момент М+и М–заполнены лишь нулями, единицами и оценками 1/n. Значения истинности и лжи могут иметь гипотезы, у которых в качестве причин даны полные описания объектов, образующих множества примеров.

Если некоторая положительная или отрицательная гипотеза hi j k имела оценку k/n, то при появлении нового примера (n заменяется на n+1) проверяется, подтверждает или не подтверждает новый пример эту гипотезу. При подтверждении оценка k/n заменяется на (k+1)/(n+1), а при неподтверждении новым примером ранее выдвинутой гипотезы ее оценка меняется с k/n на (k–1)/(n+1). Таким образом, в процессе накопления новой информации оценки гипотез либо приближаются к 0 или 1, либо ведут себя каким-либо «колеблющимся» образом. В первом случае гипотеза может на некотором шаге (когда будет пройден некоторый априорно заданный нижний порог достоверности) исчезнуть из М+или М–. Во втором случае при достижении некоторого верхнего порога достоверности гипотеза может получить оценку, отражающую эмпирическую истину, и запомниться как некий установленный факт в системе или эта гипотеза сообщается человеку, работающему с ДСМ-программами. В третьем случае, если колебания оценок достаточно сильны, может также произойти исключение сформированной ранее гипотезы из тех, которые описаны в М+и М?.

Новые гипотезы формируются не только на основании выделения в примерах определенного сходства (общей части в описании). Они могут использовать и метод различия, также сформулированный Миллем. Различие выявляется для примеров, относящихся к группам положительных и отрицательных примеров. Найденное различие служит кандидатом для гипотез, включаемых в М+или М–.

Кроме выявления кандидатов в причины аi для положительных и отрицательных гипотез в описываемом методе ищутся также тормоза, наличие которых снимает влияние аi на появление bj . В новых версиях метода в качестве а i выступают весьма сложные утверждения, в которых отдельные части описаний объектов могут быть связаны между собой произвольными логическими выражениями, например, следующего типа: «Если в объекте есть а’ и а’’ и нет а’’’ или в объекте есть а’’’’, то свойство b имеет место».

Как уже было сказано, в ДСМ-методе кроме прямой реализации идей Милля используются еще некоторые выводы по аналогии. Для этого на множестве описаний объектов вводится тем или иным способом понятие сходства. Если, например, речь идет о структурных формулах химических соединений, то мерой сходства для них могут быть совпадение самих структур при различных заполнителях позиций или, наоборот, наличие в некоторых фиксированных позициях структур одинаковых элементов. Если установлено отношение сходства, то в ДСМ-методе происходит вывод по аналогии. Он осуществляется следующим способом. Если гипотеза hi j k имеет оценку k/n и такова, что причина, используемая в ней, сходна с причиной в гипотезе h’i j k , имеющейся в той же матрице М и оцениваемой с точки зрения достоверности значением 1/n, то на гипотезу h’i j k переносится оценка гипотезы hi j k и она получает оценку достоверности k/n. Подобная процедура в ДСМ-методе называется правилом положительной аналогии. Существует в этом методе и правило отрицательной аналогии, а также градация тех и других правил по силе учитывающегося в них сходства. Таким образом, ДСМ-метод демонстрирует возможность проведения правдоподобных рассуждений весьма широкого спектра.

 

Нечеткий вывод

Ранее мы говорили о кванторах общности и существования в исчислении предикатов и о близких к ним по смыслу кванторах в силлогистике Аристотеля. Эти кванторы – не единственные. Могут встречаться и более сложные указатели. И как раз их-то чаще всего используют в своих рассуждениях люди. Эти кванторы в отличие от классических кванторов будем называть квантификаторами.

Вот, например, квантификатор «только». Какова его роль в наших рассуждениях? Если кто-то говорит: «Маша из всех каш ест только гречневую», то квантификатор «только» выделяет из множества сущностей с именем «каши» одну определенную сущность. В этом случае рассматриваемый квантификатор играет роль выделителя определенной группы элементов. В другом утверждении «Только тропические страны пригодны для возделывания кофе» квантификатор «только» выполняет именно эту роль – выделителя из множества стран тех, которые относятся к тропическим. Утверждение, приведенное нами, порождает два других утверждения: «Существуют тропические страны, в которых возделывается кофе» и «Для всех стран, которые не являются тропическими, неверно утверждение, что в них можно возделывать кофе». Но в естественном языке «только» может использоваться и для указания на другие способы вычленения событий. Вот несколько примеров: «Я купил только чашки» (т.е. я купил чашки, а не что-либо иное), «На лекцию пришло только пять студентов» (т.е. именно пять, а не другое число), «Он приедет только завтра» (а не сегодня? не послезавтра?). Число подобных примеров можно неограниченно продолжать.

«Только» – не единственный экзотический квантификатор. Чего стоит, например, квантификатор «Даже»! Сравним два утверждения: «Даже Джек смог догнать эту лисицу» и «Даже Джек не смог догнать эту лисицу». Внешне оба утверждения весьма похожи. Но квантификатор «даже» выполняет в них различную роль. В первом утверждении Джек стоит на нижнем конце шкалы, по которой упорядочены все собаки, пригодные для охоты на лис, а во втором утверждении квантификатор «даже» ставит Джека на первое место в этой шкале. До настоящего времени не создана теория рассуждений с подобными квантификаторами. Поэтому в данном разделе рассмотрим лишь вполне определенную группу квантификаторов, которую будем называть нечеткими квантификаторами. Обозначим их, как это традиционно принято для кванторов в логике, перевернутыми буквами. Прежде всего определим, какие же квантификаторы будем считать нечеткими.

Их название указывает на тесную связь с новым разделом математики – нечеткой математикой. Слово «нечеткая» да еще в применении к математике вызывает законное недоумение. Но такова калька английского слова fuzzy, которое можно переводить еще как «размытая» или «расплывчатая». Именно это слово использовал Л. Заде – основатель нечеткой математики. В отличие от обычного понятия множества, известного каждому, кто сталкивался с математикой, Заде ввел понятие нечеткого множества. Оно отличается от обычного множества тем, что относительно любых его элементов в теории Заде можно сделать три утверждения, из которых только первые два рассматриваются в обычной (четкой) математике: «Элемент принадлежит данному множеству», «Элемент не принадлежит данному множеству» и «Элемент принадлежит данному множеству со степенью уверенности ?». При этом 0

На рис. 28, а показана ситуация, связанная с формированием множества с именем «высокие люди». По-видимому, никто не усомнится, что персонаж А к этому множеству принадлежит. Для него ?=1. Столь же очевидно, что персонаж В должен остаться вне формируемого множества. Для него ?=0. Относительно же персонажа С мнения могут разделиться. Одни будут склонны считать, что рост 170 см уже достаточен для отнесения С к высоким людям. Другие же будут придерживаться противоположного мнения. Мнения относительно принадлежности отдельных элементов нечеткому множеству никогда не становятся однозначными. Это произошло бы в единственном случае, когда понятие «высокий рост» было бы регламентировано ГОСТом, обязательным для всех людей, участвующих в нашем мысленном эксперименте. А пока этого нет, каждый волен иметь по этому поводу свое мнение.

Рис. 28.

Если опросить достаточное количество людей, то можно получить усредненные характеристики того, что люди считают высоким ростом. На рис. 28, б показана некоторая функция, называемая функцией принадлежности нечеткого множества. Ее ординаты показывают степень принадлежности людей с тем или иным значением роста, отложенным по горизонтальной оси, к множеству «высокие люди». Конкретные значения ординат этой функции могут меняться при смене тех, кого мы опрашиваем (например, в Юго-Восточной Азии произойдет явное смещение границы высоких людей влево), но качественный вид функции принадлежности будет неизменным. Сначала будет идти нулевая зона, потом начнется рост значений функции, а завершением ее будет опять горизонтальный участок со значением ?=1.

«Высокий» – это представитель множества нечетких квантификаторов. Теперь можно сказать, что некоторый квантификатор является нечетким, если для него оказывается возможным построить функцию принадлежности к соответствующему нечеткому множеству. Таких квантификаторов в человеческих рассуждениях немало. Вот несколько примеров из стихотворений Б.Л. Пастернака: «Мне далекое время мерещится, дом на стороне Петербургской», «Огни заката догорали. Распутицей в бору глухом в далекий хутор на Урале тащился человек верхом», «На протяженьи многих зим я помню дни солнцеворота, и каждый был неповторим и повторялся вновь без счета». В них использованы нечеткие квантификаторы, формирующие нечеткие множества с именами «далекое время», «далекое место», «многие зимы». Для них можно построить соответствующие функции принадлежности, использовав, в частности, дополнительную информацию из текста стихотворения или из нормативных знаний о длительности человеческой жизни или об оценках расстояний, преодолеваемых верхом.

Введем важное понятие лингвистической шкалы. Лингвистическая шкала – это последовательность нечетких квантификаторов, относящихся к оценке элементов по одному и тому же основанию (расстоянию, длительности, частоте, размерам и т.п.). Примерами лингвистических шкал могут служить шкала расстояний: вплотную, очень близко, близко, ни далеко ни близко, далеко, очень далеко, в бесконечности; или шкала размеров: крошечный, очень маленький, маленький, средний, большой, очень большой, огромный. Особенностью лингвистических шкал является то, что их элементы могут быть отражены в некоторых интервалах значений определенного параметра, измеряемого в натуральных единицах (метрах, часах, квадратных километрах и т.п.). При хорошо устроенной шкале эти интервалы должны покрывать ее плотно без наложений друг на друга. Добиться этого можно путем введения отсечек на графиках функций принадлежности, фиксирующих некоторое их пороговое значение.

На рис. 28, в показаны два уровня отсечки ?: ?1 и ?2. Как видно из проекций отсекающих линий на ось абсцисс, ?1 таково, что плотного покрытия интервалами значений параметра «рост» не происходит. Между отрезками, соответствующими нечетким квантификаторам роста «маленький», «средний» и «высокий», образуются пустые отрезки (на рис. 28, в они не помечены косыми линиями). При значении ?2 заполнение почти плотное. Если оставшийся пустым отрезок разделить пополам между двумя соседними, то образуется лингвистическая шкала роста, содержащая три нечетких квантификатора. Величина ? может быть определена как степень уверенности, с которой квантификатор относит значения роста к соответствующим нечетким множествам (в нашем примере это множества «маленькие (в смысле роста) люди», «люди среднего роста» и «высокие люди»).

Перейдем теперь к нечетким рассуждениям. Напомним сначала, что один шаг достоверного вывода можно описать в виде схемы следующего вида.

Здесь над чертой стоят те утверждения, истинность которых уже доказана, а ниже черты – утверждения, истинность которых логически следует из верхних утверждений и тех правил вывода, которые используются в данной логической системе. Для большей наглядности рассмотрим один частный, но весьма распространенный случай вывода, с которым мы уже сталкивались, – по правилу модус поненс. Напомним его схему:

Рассмотрим теперь схему вида

Здесь 1 – нечеткий квантификатор, показывающий, что истинность А не является абсолютной. Конечно, вывод, который следует из подобной посылки, также не может быть достоверным. Степень его правдоподобности оценивается нечетким квантификатором 2. Примером рассуждения такого типа может служить следующая схема:

Знак вопроса стоит тут на том месте, где должен находиться некоторый нечеткий квантификатор. Интуиция подсказывает нам, что им должен быть квантификатор «часто». Вывод «часто я не выхожу на улицу» выглядит вполне в духе человеческих умозаключений.

Рассмотрим еще одну схему:

Здесь квантификатор 1 стоит в другой позиции. Примером такого рассуждения может служить следующая схема:

Какой квантификатор надо здесь подставить вместо знака вопроса? Однозначный ответ на этот вопрос вряд ли возможен. В схеме нет информации о частоте события А. А без этой информации трудно сделать сколь-нибудь содержательное заключение. Можно лишь отметить, что если речь идет о сиюминутном решении о прогулке, то положительное решение о ней имеет не слишком большую вероятность.

Рассмотрим, наконец, схему

Конкретный случай ее реализации:

Здесь определение 2 более обосновано. По-видимому, большинство читателей не будут возражать, если вместо знака вопроса будет стоять квантификатор «нередко», хотя могут быть и другие мнения.

При создании логик, моделирующих нечеткие рассуждения, делалось немало попыток поиска формальных процедур, позволяющих «вычислять» вид 2. О некоторых из них говорится в комментариях к данному разделу. В следующем разделе мы опишем один из возможных способов такого «вычисления», а в заключительном разделе главы познакомимся еще с несколькими предложениями такого рода. Но прежде чем делать это, остановимся еще на одном моменте, связанном с использованием нечетких квантификаторов при рассуждениях.

В высказываниях «В Ленинграде часто идет дождь» или «Мой ребенок часто болеет» использован один и тот же нечеткий квантификатор «часто». Но каждому ясно, что за ним скрывается неодинаковая фактическая частота. Дожди в Ленинграде, наверное, идут куда чаще, чем болеет ребенок. Один и тот же квантификатор соотносится в этих высказываниях с различными нормами. Норма частоты дождя в Ленинграде иная, чем норма частоты заболевания детей. Если житель Москвы говорит, что он живет недалеко от работы, а житель Ялты говорит то же самое, то за квантификатором «недалеко» у москвича скрывается куда большее расстояние, чем у ялтинца. Таким образом, сами по себе квантификаторы ничего не определяют, кроме положения на лингвистической шкале. В конкретных ситуациях они приобретают некоторый физический смысл, зависящий от этих ситуаций. Поэтому особое значение приобретают исследования, в которых предлагается аппарат, позволяющий делать нечеткие выводы единообразным способом для всего класса однотипных или похожих ситуаций.

Известен, например, Принцип ситуативной инвариантности, позволяющий, проведя рассуждение для одной ситуации, преобразовывать его формальным образом для ситуаций, сходных с первоначальной. Этот принцип срабатывает, если имеется лингвистическая шкала. Тогда переход от ситуации к ситуации связан с монотонным смещением всех отрезков, соответствующих квантификаторам шкалы, на определенное число позиций влево или вправо по множеству значений признака, учитываемого данной лингвистической шкалой. Такое смещение позволяет использовать в нечетких рассуждениях элементы, характерные для рассуждений по аналогии. Только вместо диаграммы, отражающей пропорцию Лейбница, в нечетких рассуждениях появляется нечеткая диаграмма моделирования (НДМ), которая имеет вид

В этой диаграмме А обозначает описание некоторой ситуации, а ? – отображение этой ситуации с помощью перехода от качественных параметров, присутствующих в описании А, к их представлению через утверждения с нечеткими квантификаторами. Таким образом, ? есть нечеткая модель ситуации А. Если ситуация А является основанием для перехода с помощью некоторого рассуждения Т к ситуации B, то нам бы хотелось, чтобы существовало нечеткое рассуждение , с помощью которого из ? получалось бы описание , и между А и ?, а также между В и существовало определенное соответствие I (например, изоморфизм). Диаграмма НДМ должна обладать свойством коммутативности. Другими словами, должно получаться одинаковым, если сначала проводится четкое рассуждение Т, а затем от В происходит переход с помощью соответствия I к или если сначала от А совершается переход к ?, а затем проводится нечеткое рассуждение , аналогичное рассуждению Т.

Такая близость рассуждений по аналогии и нечетких рассуждений не случайна. Ибо в основе этих рассуждений лежит идея сходства, похожести.

 

Нечеткая силлогистика

Силлогистика Аристотеля совсем недавно вновь стала объектом пристального внимания исследователей. Идеи нечетких рассуждений оказались перенесенными на модусы и фигуры, казавшиеся венцом достоверных рассуждений. Прежде чем изложить эти идеи, опишем одну историю, которую можно было бы назвать «Силлогизм бабушки».

«Жара уже спадала, когда Сумбурук и Твидл приехали в один маленький городок – кажется, где-то на юге Франции. Возле автостоянки был бар. Они оставили машину, договорились встретиться в баре вечером и разошлись кто куда. Сумбурук пошел бродить по незнакомым улицам, а Твидл сразу направился в бар: он всегда больше предпочитал сидеть, чем ходить.

К вечеру в бар, помахивая бамбуковой тросточкой, вошел Сумбурук. На голове у него был роскошный блестящий цилиндр.

– Вырядился, прямо как Макс Линдер. Только полосатых панталон не хватает, – сказал Твидл, когда Сумбурук приблизился к нему. – Красивая тросточка. И цилиндр, кстати, тебе идет.

– Хочешь, можешь тоже купить. Они продаются на каждом углу. А кто в цилиндре… – Сумбурук слегка, кончиками пальцев коснувшись цилиндра, сделал незаметный жест, и тросточка в другой его руке завертелась, как пропеллер. – Те, с тросточкой, я заметил, почти всегда, – закончил он и присел за стойку, собираясь заказать себе абсент. Но не успел он это сделать, как с удивлением обнаружил, что рюмка крепкого зеленоватого напитка уже стоит перед ним.

– Не удивляйся, – заметил Твидл. Он (Твидл кивнул на бармена) увидел, как ты вертел тросточкой, вот и все. Держу пари, здесь все, кто с тросточкой, пьют исключительно абсент. По крайней мере, за три часа, пока я здесь, он ни разу не ошибся. Да и то сказать, – Твидл еще раз оглядел Сумбурука, – с таким цилиндром и тросточкой можно разве в этом городе пить что-нибудь кроме абсента?

Сумбурук сделал глоток и на секунду задумался.

– Я, кажется, могу дать ему дельный совет, – сказал он и показал незаметно на бармена. Сумбурук щелкнул пальцами, и бармен поглядел на него.

– А тем, кто в цилиндре, вы тоже сразу наливаете абсент?

– Да, если в руках еще и тросточка, – ответил бармен.

– Но в этом городе все, кто в цилиндре, ходят с тросточкой, разве нет?

– Почти все, – поправил бармен. – Вам налить что-нибудь другое? И он с подозрением посмотрел на цилиндр Сумбурука

– Все в порядке, – успокоил его Сумбурук. Просто мой вам совет: тому, кто в цилиндре, с тросточкой он или без тросточки, можете, не спрашивая, тоже смело наливать абсент – не ошибетесь никогда.

– Не ошибусь? – переспросил бармен. – Никогда? Вы уверены?

– Ну, почти никогда. Еще Аристотель говорил, если почти все, кто носит цилиндр, ходят с тросточкой, и почти все, кто ходит с тросточкой, пьют только абсент, то почти все, кто носит цилиндр, тоже пьют только абсент. Согласны? – спросил Сумбурук. Он когда-то изучал логику и немного гордился этим [8] .

– Вы не правы, – к удивлению друзей вежливо, но твердо возразил бармен. – Еще моя покойная бабушка, помню, любила повторять, если почти все, кто носит цилиндр, ходят с тросточкой, и вместе с тем почти все, кто ходит с тросточкой, пьют только абсент, то наверняка можно сказать только одно: из тех, кто носит цилиндр, многие пьют только абсент. Многие – да, согласен. А сказать "почти все" – это неверно.

Сумбурук никогда не был формалистом, – скорее, напротив. Но тут, немного задетый, он (с кем не бывает!) задал вопрос, который вряд ли пришел бы в голову Максу Линдеру:

– А что значит "многие"?

– Да-да, – поддержал его Твидл, – "многие" это что, больше 30 %, больше 50 % или, может, больше 90 %?

– Ну, 90 % это вряд ли, – сказал бармен, слегка ошарашенный таким обилием неизвестно откуда взявшихся цифр. – Во всяком случае "многие" это не то же самое, что "почти все". В нашем городе вкусы меняются медленно, и поверьте, я на собственном опыте знаю: моя бабушка была права.

– По всему выходит, что ваша бабушка умнее Аристотеля, – заметил Твидл.

Бармен пожал плечами.

– Я, простите, ничего не знаю о человеке по имени Аристотель. Он, наверное, грек, а я наполовину француз. Но могу сказать одно, – тут он взял бутылку абсента и налил нашим друзьям еще по рюмке, – моя бабушка была очень умная и добропорядочная женщина».

Постараемся разобраться в силлогизме бабушки. Введем ряд обозначений:

а – количество людей, которые ходят в цилиндре;

b – количество людей, которые ходят с тросточкой;

с – количество людей, которые пьют только абсент;

Р(b/а) – доля тех, кто ходит с тросточкой среди тех, кто носит цилиндр;

Р(c/b) – доля тех, кто пьет только абсент, среди тех, кто ходит с тросточкой;

Р(c/a) – доля тех, кто пьет только абсент, среди тех, кто ходит в цилиндре;

Р(а) – доля тех жителей города, которые ходят в цилиндре, от всех жителей города;

Р(b) – доля тех, кто ходит с тросточкой, от всех жителей города;

Р(c) – доля тех, кто пьет только абсент, от всех жителей города.

Получение всей этой информации требует некоторого статистического обследования жителей города и их привычек. Результаты такого обследования могут быть сведены в таблицу сопряженности (табл. 5).

Таблица 5

В этой таблице z3, например, доля жителей торода, которые ходят в цилиндре и с тросточкой, но не пьют абсента. Аналогичным образом интерпретируются и остальные ее элементы. Значения z1, удовлетворяют ряду соотношений.

1. z1+z2+z3+z4+z5+z6+z7+z8=1.

Это соотношение вытекает из нормировки, так как zi – доли.

2. Восемь ограничений вида z i ?0, вытекающие из смысла zi , i=1,2,…,8.

3. Предположим, что в городе множества жителей, которые носят цилиндр, ходят с тросточкой и пьют только абсент, не являются пустыми. Это означает, что должны выполняться следующие неравенства:

Значение ? выбрано так, чтобы все эти три неравенства были справедливы.

4. Еще два неравенства связаны с тем, что величины Р(b/а) и Р(c/b), входящие в посылку силлогизма бабушки, должны удовлетворять ограничениям P(b/a)?? и P(c/b)??, где ? подобрано таким образом, чтобы оба неравенства выполнялись. Если условные частоты выразить через элементы таблицы сопряженности, то можно получить еще два неравенства:

В этих ограничениях два параметра: ? и ?. Варьируя их, можно вводить различные нечеткие квантификаторы в силлогизм типа силлогизма бабушки или силлогизма Сумбурука.

Дадим некоторые необходимые пояснения к приведенной системе. Посылки силлогизма бабушки, как его сформулировал бармен, звучат так: «Из тех, кто носит цилиндр, почти все ходят с тросточкой» И «Из тех, кто ходит с тросточкой, почти все пьют только абсент». Заглавная буква И отделяет один член посылки от другого. Первый член посылки говорит о том, что P(b/a) есть нечеткий квантификатор «почти все», а второй член посылки содержит аналогичное утверждение относительно P(c/b). Если считать, что нечеткому квантификатору «почти все» на лингвистической шкале соответствует некоторый отрезок, то он имеет вид [?,1], где ?>0. Именно в этом смысл двух последних неравенств. В силлогизме бабушки дается оценка нечеткого квантификатора, соответствующего Р(с/а). Бабушка считает, что Р(с/а) соответствует квантификатор «многие». Сумбурук же считает, что Р(с/а) соответствует квантификатор «почти все». Значит, бабушка предполагает, что Р(с/а) на лингвистической шкале соответствует полуинтервал [?,?] и ?>0, а Сумбурук уверен, что это отрезок [?,1]. В этом и состоит их несогласие.

Их спор происходит в условиях некоторого «контекста». Этот контекст определяется величинами Р(а), Р(b) и Р(с), характерными для данного городка. В наших ограничениях контекст определяется параметром ?.

Силлогизмы бабушки и Сумбурука – это формальный вывод вида А В. Здесь А – посылка силлогизма, общая для бабушки и Сумбурука, а В – заключение, которое у бабушки имеет вид «Р(с/а) есть нечеткий квантификатор «многие»», а у Сумбурука – вид «Р/(c/a) есть нечеткий квантификатор «почти все»». Вывод: силлогизм происходит в условиях контекстных ограничений, характеризуемых параметром ?.

Как разрешить спор? Выход один. Надо задать значения ?, ? и ? и свести проблему к решению типовой задачи линейного целочисленного программирования, которая формулируется следующим образом. Найти целочисленные значения zi ?0 (i=1,2,…,8), такие, что удовлетворяются шесть вышеприведенных неравенств, и такие, что минимум функции

достигает своего максимума.

Если задача решена и минимум Р(с/а) есть ? и этот минимум удовлетворяет неравенству ???, то верен силлогизм бабушки. А если ???

Значит, все зависит от того, как определены ?, ? и ?. Пусть для определения этих значений мы опросили четырех людей Ч1, Ч2, Ч3 и Ч4. Их ответы сведены в табл. 6.

Таблица 6

Интерпретация чисел в таблице следующая. Опрашиваемый считает, что можно говорить «почти все», когда явление это встречается не реже, чем в 95 случаях из 100. Аналогично интерпретируются и остальные элементы таблицы. В первом столбце стоят значения ?, во втором ?, а в третьем ?. Каждая строка может быть использована для решения задачи линейного программирования, которую мы сформулировали. Если решить возникающие четыре задачи, то выяснится, что силлогизм бабушки оказывается истинным во всех случаях, кроме третьего. В третьем случае прав Сумбурук, а бабушка ошибается.

Из сказанного ясно, что при исследовании нечетких силлогизмов (или D-cиллогизмов, как их принято называть) необходимо анализировать области в пространстве параметров ?, ?, ?, в которых будут истинны или ложны те или иные силлогизмы. В частности, для силлогизма бабушки доказывается следующее утверждение, которое естественно было бы назвать Теоремой бармена: «Силлогизм бабушки истинен только в тех точках параметрического пространства, в которых выполняется соотношение ??max[0,2?1/?, 1?(1??)(?+1/?)]». Но, наверное, ни бармен, ни Сумбурук не смогли бы так четко сформулировать нужный для разрешения их спора результат.

Рассуждая о споре в баре, мы незаметно сформулировали метод формального поиска оценок нечетких квантификаторов в схемах рассуждений. Ведь если вернуться к схемам предшествующего раздела, то становится ясным, что метод решения силлогизма бабушки вполне пригоден для поиска 2 в заключениях этих схем.

 

Коллекция схем

Среди схем правдоподобных рассуждений встречаются не только те, которые мы расссмотрели и которые основаны на индуктивном выводе, аналогиях или нечетких квантификаторах. Многими исследователями предлагались и иные схемы. Их количество достаточно велико и продолжает расти. В этом разделе мы приведем (практически без комментариев) примеры схем, в основе которых лежат соображения, связанные с теорией вероятностей и аналогией, а также несколько схем, типичных для теории возможностей, активно развивающейся в последние годы ветви теории рассуждений.

Рассмотрим прежде всего схемы рассуждений, опирающиеся на свойства вероятностей, т.е. вероятностные схемы рассуждений.

Рассуждением, основанным, например, на схеме 2, может служить следующее: «С вероятностью, большей 0,7, при переохлаждении двигателя он не заводится с помощью стартера. Вероятность того, что он не заводится, меньше 0,5. Следовательно, вероятность того, что двигатель переохлажден, меньше min(1,1–0,7+0,5), т.е. меньше 0,8». Так же нетрудно придумать примеры и для других схем вероятностных рассуждений.

Рассмотрим две схемы рассуждения с учетом необходимых условий.

Значения q и r необходимости в этих схемах могут оцениваться в каких-то специальных единицах. Можно считать, например, что имеется лингвистическая шкала нечетких квантификаторов необходимости. Тогда q и r будут соответствовать некоторые интервалы или усредненные характеристики этих интервалов. В качестве примера рассуждения с учетом необходимых условий в соответствии со схемой 5 приведем следующее рассуждение: «Если у меня будет дача, то необходимо будет купить велосипед. Дача мне крайне необходима. Тогда покупка велосипеда для меня необходима».

Рассмотрим еще две схемы, в которых наряду с необходимостью учитывается возможность некоторых фактов, явлений или действий. Подобные схемы (как и две предшествующие) характерны для упоминавшейся теории возможностей.